Plasticity for Structural Engineers

Plasticity for Structural Engineers

Author: Wai-Fah Chen

Publisher: J. Ross Publishing

Published: 2007-02-15

Total Pages: 625

ISBN-13: 1932159754

DOWNLOAD EBOOK

J. Ross Publishing Classics are world-renowned texts and monographs written by preeminent scholars. These books are suitable for students, researchers, professionals and libraries.


Understanding Structural Engineering

Understanding Structural Engineering

Author: Wai-Fah Chen

Publisher: CRC Press

Published: 2011-05-24

Total Pages: 271

ISBN-13: 1439827117

DOWNLOAD EBOOK

In our world of seemingly unlimited computing, numerous analytical approaches to the estimation of stress, strain, and displacement-including analytical, numerical, physical, and analog techniques-have greatly advanced the practice of engineering. Combining theory and experimentation, computer simulation has emerged as a third path for engineering


Theory of Plasticity

Theory of Plasticity

Author: Jagabanduhu Chakrabarty

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 895

ISBN-13: 0080481361

DOWNLOAD EBOOK

Plasticity is concerned with the mechanics of materials deformed beyond their elastic limit. A strong knowledge of plasticity is essential for engineers dealing with a wide range of engineering problems, such as those encountered in the forming of metals, the design of pressure vessels, the mechanics of impact, civil and structural engineering, as well as the understanding of fatigue and the economical design of structures. Theory of Plasticity is the most comprehensive reference on the subject as well as the most up to date -- no other significant Plasticity reference has been published recently, making this of great interest to academics and professionals. This new edition presents extensive new material on the use of computational methods, plus coverage of important developments in cyclic plasticity and soil plasticity. - A complete plasticity reference for graduate students, researchers and practicing engineers; no other book offers such an up to date or comprehensive reference on this key continuum mechanics subject - Updates with new material on computational analysis and applications, new end of chapter exercises - Plasticity is a key subject in all mechanical engineering disciplines, as well as in manufacturing engineering and civil engineering. Chakrabarty is one of the subject's leading figures.


Plasticity Theory

Plasticity Theory

Author: Jacob Lubliner

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 548

ISBN-13: 0486318206

DOWNLOAD EBOOK

The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.


Plasticity in Reinforced Concrete

Plasticity in Reinforced Concrete

Author: Wai-Fah Chen

Publisher: J. Ross Publishing

Published: 2007

Total Pages: 500

ISBN-13: 9781932159745

DOWNLOAD EBOOK

J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.


Introduction to Engineering Plasticity

Introduction to Engineering Plasticity

Author: Tongxi Yu

Publisher: Elsevier

Published: 2022-06-20

Total Pages: 406

ISBN-13: 0323989829

DOWNLOAD EBOOK

The theory of plasticity is a branch of solid mechanics that investigates the relationship between permanent deformation and load, and the distribution of stress and strains of materials and structures beyond their elastic limit. Engineering plasticity underpins the safety of many modern systems and structures. Realizing the full potential of materials as well as designing precise metal processing and energy absorption structures requires mastery of engineering plasticity. Introduction to Engineering Plasticity: Fundamentals with Applications in Metal Forming, Limit Analysis and Energy Absorption presents both fundamental theory on plasticity and emphasizes the latest engineering applications. The title combines theory and engineering applications of plasticity, elaborating on problem solving in real-world engineering tasks such as in metal forming, limit analysis of structures, and understanding the energy absorption of structures and materials. The five main parts of the book cover: Plastic properties of materials and their characterization; Fundamental theory in plasticity; Elastic-plastic problems and typical solutions; and Rigid-plastic problems under plane-stress conditions. This title provides students and engineers alike with the fundamentals and advanced tools needed in engineering plasticity. - Brings together plasticity theory with engineering applications and problem solving - Elaborates problem solving methods and demonstrates plasticity in various engineering fields - Covers the recent decades of research on metal forming and limit analysis - Includes energy absorption of new structures and materials where plasticity dominates analysis and design - Gives a systematic account of the theory of plasticity alongside its engineering applications


Plasticity for Structural Engineers

Plasticity for Structural Engineers

Author: Wai-Fah Chen

Publisher:

Published: 2007

Total Pages: 606

ISBN-13: 9781604276428

DOWNLOAD EBOOK

This comprehensive text addresses the elastic and plastic behavior of general structural elements under combined stress. It sets out to examine the stress strain behaviors of materials under simple test conditions and proceeds to show how these behaviors can be generalized under combined stress. An unabridged J. Ross Publishing republication of the edition published by Springer-Verlag, New York, 1988, 606pp.


Soil Plasticity

Soil Plasticity

Author: W.F. Chen

Publisher: Elsevier

Published: 1985-11-01

Total Pages: 244

ISBN-13: 0444598367

DOWNLOAD EBOOK

This book is addressed primarily to civil engineers familiar with such traditional topics as strength of materials, soil mechanics, and theory of elasticity and structures, but less familiar with the modern development of the mathematical theory of soil plasticity necessary to any engineer working under the general heading of nonlinear analysis of soil-structure system. This book will satisfy his needs in the case of the soil medium.It introduces the reader to the theory of soil plasticity and its numerical implementation into computer programs. The theory and method of computer implementation presented here are appropriate for solving nonlinear static dynamic problems in soil mechanics and are applicable for finite difference and finite element computer codes. A sample computer model subroutine is developed and this is used to study some typical soil mechanics problems.With its comprehensive coverage and simple, concise presentation, the book will undoubtedly prove to be very useful for consulting engineers, research and graduate students in geotechnical engineering.


Handbook of Structural Engineering

Handbook of Structural Engineering

Author: W.F. Chen

Publisher: CRC Press

Published: 2005-02-28

Total Pages: 1765

ISBN-13: 1420039938

DOWNLOAD EBOOK

Continuing the best-selling tradition of the Handbook of Structural Engineering, this second edition is a comprehensive reference to the broad spectrum of structural engineering, encapsulating the theoretical, practical, and computational aspects of the field. The contributors cover traditional and innovative approaches to analysis, design, and rehabilitation. New topics include: fundamental theories of structural dynamics; advanced analysis; wind- and earthquake-resistant design; design of prestressed structures; high-performance steel, concrete, and fiber-reinforced polymers; semirigid frame structures; structural bracing; and structural design for fire safety.