Handbook of Deposition Technologies for Films and Coatings

Handbook of Deposition Technologies for Films and Coatings

Author: Peter M. Martin

Publisher: William Andrew

Published: 2009-12-01

Total Pages: 932

ISBN-13: 0815520328

DOWNLOAD EBOOK

This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.


Plasma Surface Modification of Polymers: Relevance to Adhesion

Plasma Surface Modification of Polymers: Relevance to Adhesion

Author: Kash L. Mittal

Publisher: CRC Press

Published: 2014-04-29

Total Pages: 299

ISBN-13: 1466563419

DOWNLOAD EBOOK

This book is a collection of invited papers (previously published in special issues of the Journal of Adhesion Science and Technology) written by internationally recognized researchers actively working in the field of plasma surface modification. It provides a current, comprehensive overview of the plasma treatment of polymers. In contrast to plasm


Handbook of Physical Vapor Deposition (PVD) Processing

Handbook of Physical Vapor Deposition (PVD) Processing

Author: D. M. Mattox

Publisher: Cambridge University Press

Published: 2014-09-19

Total Pages: 947

ISBN-13: 0080946585

DOWNLOAD EBOOK

This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.


Biodegradable Green Composites

Biodegradable Green Composites

Author: Susheel Kalia

Publisher: John Wiley & Sons

Published: 2016-02-29

Total Pages: 377

ISBN-13: 1118911091

DOWNLOAD EBOOK

This book comprehensively addresses surface modification of natural fibers to make them more effective, cost-efficient, and environmentally friendly. Topics include the elucidation of important aspects surrounding chemical and green approaches for the surface modification of natural fibers, the use of recycled waste, properties of biodegradable polyesters, methods such as electrospinning, and applications of hybrid composite materials.


Film Deposition by Plasma Techniques

Film Deposition by Plasma Techniques

Author: Mitsuharu Konuma

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 3642845118

DOWNLOAD EBOOK

Properties of thin films depend strongly upon the deposition technique and conditions chosen. In order to achieve the desired film, optimum deposition conditions have to be found by carrying out experiments in a trial-and error fashion with varying parameters. The data obtained on one growth apparatus are often not transferable to another. This is especially true for film deposition processes using a cold plasma because of our poor under standing of the mechanisms. Relatively precise studies have been carried out on the role that physical effects play in film formation such as sputter deposition. However, there are many open questions regarding processes that involve chemical reactions, for example, reactive sputter deposition or plasma enhanced chemical vapor deposition. Much further research is re quired in order to understand the fundamental deposition processes. A sys tematic collection of basic data, some of which may be readily available in other branches of science, for example, reaction cross sections for gases with energetic electrons, is also required. The need for pfasma deposition techniques is felt strongly in industrial applications because these techniques are superior to traditional thin-film deposition techniques in many ways. In fact, plasma deposition techniques have developed rapidly in the semiconductor and electronics industries. Fields of possible application are still expanding. A reliable plasma reactor with an adequate in situ system for monitoring the deposition conditions and film properties must be developed to improve reproducibility and pro ductivity at the industrial level.


Plasma Surface Modification and Plasma Polymerization

Plasma Surface Modification and Plasma Polymerization

Author: Norihiro Inagaki

Publisher: CRC Press

Published: 2014-07-22

Total Pages: 281

ISBN-13: 1498710832

DOWNLOAD EBOOK

In current materials R&D, high priority is given to surface modification techniques to achieve improved surface properties for specific applications requirements. Plasma treatment and polymerization are important technologies for this purpose. This book provides a basic and thorough presentation of this subject. This is probably the first book


Non-Thermal Plasma Technology for Polymeric Materials

Non-Thermal Plasma Technology for Polymeric Materials

Author: Sabu Thomas

Publisher: Elsevier

Published: 2018-10-08

Total Pages: 496

ISBN-13: 0128131535

DOWNLOAD EBOOK

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering


Plasma Surface Metallurgy

Plasma Surface Metallurgy

Author: Zhong Xu

Publisher: Springer

Published: 2017-09-21

Total Pages: 281

ISBN-13: 9811057249

DOWNLOAD EBOOK

This book provides a comprehensive introduction to and technical description of a unique patented surface-modification technology: plasma surface metallurgy with double-glow discharge plasma process, known as the Xu-Tec process. As such it promotes further attention and interest in scientific research and engineering development in this area, as well as industrial utilization and product commercialization. The Xu-Tec process has opened up a new material engineering field of “Plasma Surface Metallurgy”. This surface-modification process can transform many low-grade and low-cost industrial engineering materials into “gold” materials with a high value and high grade or special functions. This improved material can be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind. “This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field.” James E. Thompson, Prof. Fellow of the IEEE Dean of Engineering Emeritus University of Missouri, Columbia, Missouri, USA November, 2016 "A BREAKTHROUGH IN MAKING METAL TOUGHER". ---- SCIENCE & TECHNOLOGY Business Week, July 24, 1989 “NOVEL SURFACE ALLOYING PROCESS” --- THE LEADING EDGE TECHNOLOGY WORDWIDE Materials and Processing Report, Dec. 1987


Atmospheric Pressure Plasma for Surface Modification

Atmospheric Pressure Plasma for Surface Modification

Author: Rory A. Wolf

Publisher: John Wiley & Sons

Published: 2012-11-08

Total Pages: 268

ISBN-13: 1118547551

DOWNLOAD EBOOK

This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma processing with the intention of becoming a primary reference for students and professionals. The reader will learn the mechanisms which control and operate atmospheric plasma technologies and how these technologies can be leveraged to develop in-line continuous processing of a wide variety of substrates. Readers will gain an understanding of specific surface modification effects by atmospheric plasmas, and how to best characterize those modifications to optimize surface cleaning and functionalization for adhesion promotion. The book also features a series of chapters written to address practical surface modification effects of atmospheric plasmas within specific application markets, and a commercially-focused assessment of those effects.