Plant cell cultures are used extensively in studies of secondary metabolism, for the biosynthesis of pharmaceuticals, flavors, essences, and pigments. This book highlights recent developments in the in vitro growth of cultured plant cells and in the production of valuable secondary metabolites. Plant Cell Culture Secondary Metabolism details research on many exciting areas including:
Plant cell culture techniques are used increasingly in basic research for plant exploitation in industry, including for example, genetic engineering and micropropagation. The rapidly developing role of plant cell culture has necessitated this new edition of a widely acclaimed book. It covers a wide range of methods central to the exploitation of plant cell cultures in fundamental and applied research. This thoroughly revised work retains the combination of giving and explaining the general principles involved with the concise description of specific protocols, with appeal to a broad readership, that made the first edition so successful. Internationally recognized experts describe the techniques used for isolating and manipulating cell cultures, and the central importance in plant biotechnology. The book will be of major interest to researchers in plant sciences in general, and specifically to botany, plant physiology, and biotechnology students.
This work deals with basic plant physiology and cytology, and addresses the practical exploitation of plants, both as crops and as sources of useful compounds produced as secondary metabolites. Covers problems of commercial exploitation, socio-legal aspects of genetic engineering of crop plants, and of the difficulties of marketing natural compunds produced by cells under artificial conditions.
The purpose of this book is to provide the advances in plant in vitro culture as related to perennial fruit crops and medicinal plants. Basic principles and new techniques, now available, are presented in detail. The book will be of use to researchers, teachers in biotechnology and for individuals interested to the commercial application of plant in vitro culture.
Natural compounds obtained from plants represent a tremendous global market due to their use as food additives, cosmetics, in agriculture and in pharmaceuticals. This book provides up-to-date information on various strategies and methods for producing compounds of interest. Leading researchers discuss the latest advances in environmentally friendly natural compound production from plants, making the book a valuable resource for biotechnologists, pharmacists, food technologists and researchers working in the medical and healthcare industries.
Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. - Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences - Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis - Examines critical issues of international importance and offers real-life examples and potential solutions
The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
"Bio-Farms for Nutraceuticals" can be said to have been born of the NUTRA-SNACKS project within the Sixth Framework Programme Priority on Food Quality and Safety. One objective of NUTRA -SNACK S was to improve the nutritional and eating properties of ready-to-eat products and semi-prepared foodstuffs through better monitoring of the quality and safety of raw materials and the development of innovative processes along the production chain. Another main objective of the project was the production of ready-to-eat snacks with high nutraceutic activity. Seven research institutes and three companies in six European countries were involved in this effort. The co-operation resulted in the production of food having a high content of natural metabolites with the following beneficial health effects: anticancer, antilipidemic, anticholesterol, antimicrobial, antibacterial, antifungal, antiviral, antihypertensive, anti-inflamatory and antioxidant activities.
This book consists of an introductory overview of secondary metabolites, which are classified into four main sections: microbial secondary metabolites, plant secondary metabolites, secondary metabolites through tissue culture technique, and regulation of secondary metabolite production. This book provides a comprehensive account on the secondary metabolites of microorganisms, plants, and the production of secondary metabolites through biotechnological approach like the plant tissue culture method. The regulatory mechanisms of secondary metabolite production in plants and the pharmaceutical and other applications of various secondary metabolites are also highlighted. This book is considered as necessary reading for microbiologists, biotechnologists, biochemists, pharmacologists, and botanists who are doing research in secondary metabolites. It should also be useful to MSc students, MPhil and PhD scholars, scientists, and faculty members of various science disciplines.