Farm Planning with Linear Programming: Concept and Practice focuses on concepts and methods in farm planning. The book first discusses the principles of farm planning, including elements of farm planning problems, summary, and review questions. The text highlights farm planning models. The nature of models; commonly used farm planning models; multiple constraint problems and program planning; problems in applying models; and comments are considered. The book also focuses on the linear programming network; opportunity cost and the simplex method; and analysis of the linear programming solution. The text also explains tableaux construction for short-run planning. Crop and pasture rotations; feed budgeting; buy, sell, and hire activities; and livestock reconciliation are discussed. The book also describes pastoral property applications. Breed comparison; economics of off-farm grazing and spatial diversification; and optimal calving date and lactation length on dairy farms are discussed. The text is a good source of information for agricultural researchers, farmers, and students wanting to study farm management.
This textbook provides a comprehensive modeling, reformulation and optimization approach for solving production planning and supply chain planning problems, covering topics from a basic introduction to planning systems, mixed integer programming (MIP) models and algorithms through the advanced description of mathematical results in polyhedral combinatorics required to solve these problems. Based on twenty years worth of research in which the authors have played a significant role, the book addresses real life industrial production planning problems (involving complex production structures with multiple production stages) using MIP modeling and reformulation approach. The book provides an introduction to MIP modeling and to planning systems, a unique collection of reformulation results, and an easy to use problem-solving library. This approach is demonstrated through a series of real life case studies, exercises and detailed illustrations. Review by Jakub Marecek (Computer Journal) The emphasis put on mixed integer rounding and mixing sets, heuristics in-built in general purpose integer programming solvers, as well as on decompositions and heuristics using integer programming should be praised... There is no doubt that this volume offers the present best introduction to integer programming formulations of lotsizing problems, encountered in production planning. (2007)
Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models
This work deals with the background to linear programming (LP) using a largely non-mathematical treatment. It covers several planning cases and the LP-tools suite of programs. Copies of the programs on a distribution disk are included with the book.
In the pages of this text readers will find nothing less than a unified treatment of linear programming. Without sacrificing mathematical rigor, the main emphasis of the book is on models and applications. The most important classes of problems are surveyed and presented by means of mathematical formulations, followed by solution methods and a discussion of a variety of "what-if" scenarios. Non-simplex based solution methods and newer developments such as interior point methods are covered.
This text takes a broad view of multiobjective programming, emphasizing the methods most useful for continuous problems. It reviews methods in the context of public decision-making problems. 1978 edition.
Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programming. The power of linear programming is greatly enhanced when came the opportunity of solving integer and mixed integer linear programming. In these models all or some of the decision variables are integers, respectively. In this book we provide a brief introduction to linear programming, together with a set of exercises that introduce some applications of linear programming. We will also provide an introduction to solve linear programming in R. For each problem a possible solution through linear programming is introduced, together with the code to solve it in R and its numerical solution.
Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development.
Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.