Correlations and Clustering Phenomena in Subatomic Physics

Correlations and Clustering Phenomena in Subatomic Physics

Author: M.N. Harakeh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 264

ISBN-13: 146841366X

DOWNLOAD EBOOK

In many areas of physics, such as astrophysics, solid-state physics, nuclear physics and particle physics, a major outstanding problem is a better understanding of corre lation phenomena. While in most cases the average properties of a system are rather well understood, the correlations and the resulting clustering are poorly understood. They are reflections of the force mediating the interaction among the constituents and play essential roles in determining the structure of a physical system. At the largest scales, in astrophysics, it has recently been realized that there are huge voids in space and almost all matter is concentrated on filaments, raising interesting questions concerning the origin of this clustering of matter. In nuclear physics corre lation phenomena are important in all its subfields. It has been realized that so-called fluctuations in the one-particle density, which are a manifestation of nucleon-nucleon correlations, are crucial. These are important for an understanding of heavy-ion reac tions. This is the subject of modern quantum transport theories. Correlations are also crucial in the description of the high momentum components as observed in quasi-elastic knock-out reactions.


Spin Excitations in Nuclei

Spin Excitations in Nuclei

Author: Fred Petrovich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 651

ISBN-13: 1468447068

DOWNLOAD EBOOK

This volume contains the proceedings of the "International Conference on Spin Excitations in Nuclei" held in Telluride, Colo rado, March 25-27, 1982. The motivation for the conference was, in a large part due to the recent development of new variable energy accelerators which produce high quality beams of electrons, protons, and pions that are providing the first precise information on spin excitations in nuclei over a large range of spin and mass. In the past such data had been restricted primarily to light nuclei and were generally resolution limited. Perhaps, the most exciting new result has been the clear observation of the elusive spin-dipole strength (Gamow Teller and Ml) in medium and heavy mass nuclei through the use of the (p,n) and (p,p') reactions at or near zero degrees with 100-200 MeV incident protons. Energy dependence in the isovector parts of the nucleon-nucleon interaction make the 100-200 MeV energy region particularly appropriate for such studies. The clean data from (e,e'), ('IT,'IT'), (p,p'), and (p,n) on high spin "stretched" states which have particularly simple structure has also been quite impor tant. The recent results contain important new information on the nature of the spin dependent forces in nuclei. These in turn are inherently related to the properties of the nuclear mesonic field and the underlying quantum chromodynamics.