Vector Bundles

Vector Bundles

Author: Andrej N. Tjurin

Publisher: Universitätsverlag Göttingen

Published: 2008

Total Pages: 330

ISBN-13: 3938616741

DOWNLOAD EBOOK

This is the first volume of a three volume collection of Andrey Nikolaevich Tyurin's Selected Works. It includes his most interesting articles in the field of classical algebraic geometry, written during his whole career from the 1960s. Most of these papers treat different problems of the theory of vector bundles on curves and higher dimensional algebraic varieties, a theory which is central to algebraic geometry and most of its applications.


Vector Bundles and Complex Geometry

Vector Bundles and Complex Geometry

Author: Oscar García-Prada

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 218

ISBN-13: 0821847503

DOWNLOAD EBOOK

This volume contains a collection of papers from the Conference on Vector Bundles held at Miraflores de la Sierra, Madrid, Spain on June 16-20, 2008, which honored S. Ramanan on his 70th birthday. The main areas covered in this volume are vector bundles, parabolic bundles, abelian varieties, Hilbert schemes, contact structures, index theory, Hodge theory, and geometric invariant theory. Professor Ramanan has made important contributions in all of these areas.


If Your Build It...

If Your Build It...

Author: Dwier Brown

Publisher:

Published: 2014-04

Total Pages: 264

ISBN-13: 9780996057103

DOWNLOAD EBOOK

A funny and moving memoir from the actor who played Kevin Costner's father for five minutes at the end of the movie Field of Dreams.


Moduli of Vector Bundles

Moduli of Vector Bundles

Author: Masaki Maruyama

Publisher: CRC Press

Published: 2023-05-31

Total Pages: 324

ISBN-13: 1000950700

DOWNLOAD EBOOK

"Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."


Smooth Four-Manifolds and Complex Surfaces

Smooth Four-Manifolds and Complex Surfaces

Author: Robert Friedman

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 532

ISBN-13: 3662030284

DOWNLOAD EBOOK

In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.


Ulrich Bundles

Ulrich Bundles

Author: Laura Costa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-05-10

Total Pages: 283

ISBN-13: 3110645807

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.


Geometry of Algebraic Curves

Geometry of Algebraic Curves

Author: Enrico Arbarello

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 402

ISBN-13: 1475753233

DOWNLOAD EBOOK

In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).


Compact Moduli Spaces and Vector Bundles

Compact Moduli Spaces and Vector Bundles

Author: Valery Alexeev

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 264

ISBN-13: 0821868993

DOWNLOAD EBOOK

This book contains the proceedings of the conference on Compact Moduli and Vector Bundles, held from October 21-24, 2010, at the University of Georgia. This book is a mix of survey papers and original research articles on two related subjects: Compact Moduli spaces of algebraic varieties, including of higher-dimensional stable varieties and pairs, and Vector Bundles on such compact moduli spaces, including the conformal block bundles. These bundles originated in the 1970s in physics; the celebrated Verlinde formula computes their ranks. Among the surveys are those that examine compact moduli spaces of surfaces of general type and others that concern the GIT constructions of log canonical models of moduli of stable curves. The original research articles include, among others, papers on a formula for the Chern classes of conformal classes of conformal block bundles on the moduli spaces of stable curves, on Looijenga's conjectures, on algebraic and tropical Brill-Noether theory, on Green's conjecture, on rigid curves on moduli of curves, and on Steiner surfaces.


Higher Dimensional Complex Varieties

Higher Dimensional Complex Varieties

Author: Marco Andreatta

Publisher: Walter de Gruyter

Published: 2011-07-20

Total Pages: 393

ISBN-13: 3110814730

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Developments in Mathematics

Developments in Mathematics

Author: V Arnold

Publisher: CRC Press

Published: 1993-01-01

Total Pages: 312

ISBN-13: 9780412452703

DOWNLOAD EBOOK

A collection of seven survey articles especially commissioned by Professors Arnold and Monastyrsky highlighting areas where the Moscow scholl has amde significant recent contributions to theoretical mathematics. Contributions include papers on Knot theory, supersurfaces and dynamical systems. This book contains articles on aspects of mathematics that have become increasingly important in the west. The editors are internationally renowned for the standard of their work.