Physiology, Biophysics and Biomedical Engineering provides a multidisciplinary understanding of biological phenomena and the instrumentation for monitoring these phenomena. It covers the physical phenomena of electricity, pressure, and flow along with the adaptation of the physics of the phenomena to the special conditions and constraints of biolog
The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications
This authoritative book gathers together a broad range of ideas and topics that define the field. It provides clear, concise, and comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics. The Third Edition contains substantial new material. Most chapters have been thoroughly reworked. The book includes chapters on important topics such as sensory transduction, the physiology of protozoa and bacteria, the regulation of cell division, and programmed cell death. - Completely revised and updated - includes 8 new chapters on such topics as membrane structure, intracellular chloride regulation, transport, sensory receptors, pressure, and olfactory/taste receptors - Includes broad coverage of both animal and plant cells - Appendixes review basics of the propagation of action potentials, electricity, and cable properties - Authored by leading experts in the field - Clear, concise, comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics
Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects. - Winner of a 2018 Textbook Excellence Award (College) (Texty) from the Textbook and Academic Authors Association - Features a quantitative approach that includes physical and chemical principles - Provides a more integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology - Includes clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) - Integrates labs and problem sets to provide opportunities for practice and assessment throughout the course NEW FOR THE SECOND EDITION - Expansion of many sections to include relevant information - Addition of many new figures and re-drawing of other figures to update understanding and clarify difficult areas - Substantial updating of the text to reflect newer research results - Addition of several new appendices including statistics, nomenclature of transport carriers, and structural biology of important items such as the neuromuscular junction and calcium release unit - Addition of new problems within the problem sets - Addition of commentary to power point presentations
Human Physiology, Biochemistry and Basic Medicine is a unique perspective that draws together human biology, physiology, biochemistry, nutrition, and cell biology in one comprehensive volume. In this way, it is uniquely qualified to address the needs of the emerging field of humanology, a holistic approach to understanding the biology of humans and how they are distinguished from other animals. Coverage starts with human anatomy and physiology and the details of the workings of all parts of the male and female body. Next, coverage of human biochemistry and how sugars, fats, and amino acids are made and digested is discussed, as is human basic medicine, covering the science of diseases and human evolution and pseudo-evolution. The book concludes with coverage of basic human nutrition, diseases, and treatments, and contains broad coverage that will give the reader an understanding of the entire human picture. - Covers the physiology, anatomy, nutrition, biochemistry and cell biology of humans, showing how they are distinguished from other animals - Includes medical literature and internet references, example test questions, and a list of pertinent words at the end of each chapter - Provides unique perspective into all aspects of what makes up and controls humans
This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treatments of the physics of motion, sports, and diseases and disorders, and integrates discussions of these topics as they appear throughout the book. Also, it briefly addresses physical measurements of and in the body, and offers a broader selection of problems, which, as in the first edition, are geared to a range of student levels. This text is geared to undergraduates interested in physics, medical applications of physics, quantitative physiology, medicine, and biomedical engineering.
Elementary Medical Biophysics deals with the basic principles involved in the physical sciences, such as the application of mathematical methods involving scientific problems, the production of electricity in electrical and living cells, as well as light, sight, and radioactivity. The book reviews the graphical and mathematical representation of scientific problems, and the use of units to measure temperature, time, force, energy that are commonly employed in experiments and research work. The text describes the forces involved in diffusion and osmosis that occur during the movement of molecules or other particles when these are unevenly dispersed in a fluid medium. The force in diffusion causes a particle to move from an area of high concentration of particles into one with a low concentration, until there is equilibrium. Osmosis involves the force or movement of a solvent from an area of low concentration of the solute to an area with a high concentration of the solute. The book also explains the production of electricity in living cells of the body, as well as the possible special affinity or preference that tumors or cancerous cells can have with radioactive substances. The text is intended for nursing and paramedical students with courses in physiology, biophysics, and other programs related to the medical sciences.
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource