Physics of Surface, Interface and Cluster Catalysis

Physics of Surface, Interface and Cluster Catalysis

Author: Hideaki Kasai

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9780750311663

DOWNLOAD EBOOK

Physics of Surface, Interface and Cluster Catalysis reviews the fundamental physics of catalysis from simple surface models through to complex cluster and catalytic structures. It is the first book to provide a coherent collection of the physics of catalysis, and shows how physics has provided and continues to provide clarity and insight into many complex catalysis problems, reviewing both recent developments and prospects for future developments in the field.


Physics of Surfaces and Interfaces

Physics of Surfaces and Interfaces

Author: Harald Ibach

Publisher: Springer Science & Business Media

Published: 2006-11-18

Total Pages: 653

ISBN-13: 3540347100

DOWNLOAD EBOOK

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.


Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces

Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces

Author: Hideaki Kasai

Publisher: Springer Nature

Published: 2020-08-01

Total Pages: 164

ISBN-13: 9811569940

DOWNLOAD EBOOK

This book is dedicated to recent advancements in theoretical and computational studies on the interactions of hydrogen and hydrogenated molecules with metal surfaces. These studies are driven by the development of high-performance computers, new experimental findings, and the extensive work of technological applications towards the realization of a sustainable hydrogen economy. Understanding of the elementary processes of physical and chemical reactions on the atomic scale is important in the discovery of new materials with high chemical reactivity and catalytic activity, as well as high stability and durability. From this point of view, the book focuses on the behavior of hydrogen and hydrogenated molecules on flat, stepped, and reconstructed metal surfaces. It also tackles the quantum mechanical properties of hydrogen and related adsorbates; namely, molecular orbital angular momentum (spin) and diffusion along the minimum potential energy landscape on metal surfaces. All of these profoundly influence the outcomes of (1) catalytic reactions that involve hydrogen; (2) hydrogen storage in metals; and (3) hydrogen purification membranes. Lastly, it surveys the current status of the technology, outlook, and challenges for the long-desired sustainable hydrogen economy in relation to the topics covered in the book.


Nanocharacterization Techniques

Nanocharacterization Techniques

Author: Osvaldo de Oliveira Jr

Publisher: William Andrew

Published: 2017-03-18

Total Pages: 224

ISBN-13: 0323497799

DOWNLOAD EBOOK

Nanocharacterization Techniques covers the main characterization techniques used in nanomaterials and nanostructures. The chapters focus on the fundamental aspects of characterization techniques and their distinctive approaches. Significant advances that have taken place over recent years in refining techniques are covered, and the mathematical foundations needed to use the techniques are also explained in detail. This book is an important reference for materials scientists and engineers looking for a through analysis of nanocharacterization techniques in order to establish which is best for their needs. - Includes a detailed analysis of different nanocharacterization techniques, allowing readers to explore which one is best for their particular needs - Provides examples of how each characterization technique has been used, giving readers a greater understanding of how each technique can be profitably used - Covers the mathematical background needed to utilize each of these techniques to their best effect, meaning that readers can gain a full understanding of the theoretical principles behind each technique covered - Serves as an important, go-to reference for materials scientists and engineers


Heterophase Polymerization

Heterophase Polymerization

Author: Hugo Hernandez

Publisher: CRC Press

Published: 2021-04-04

Total Pages: 328

ISBN-13: 1000245446

DOWNLOAD EBOOK

Heterophase polymerization is a century-old technology with a wide range of relevant industrial applications, including coatings, adhesives, rubbers, and many other specialized biomedical and high-performance materials. However, due to its multiscale complexity, it still remains a challenging research topic. It is a broad field covering all heterogeneous polymerization processes that result in polymer dispersions. Its technical realizations comprise emulsion polymerization, dispersion polymerization, suspension polymerization, miniemulsion polymerization, microemulsion polymerization, and others. This book is devoted to the science and technology of heterophase polymerization, considering it a generic term as well as an umbrella expression for all of its technical realizations. It presents, from a modern perspective, the basic concepts and principles required to understand the kinetics and thermodynamics of heterophase polymerization at the atomistic, molecular, macromolecular, supramolecular, colloidal, microscopic, mesoscopic, and macroscopic scales. It critically discusses the important physicochemical mechanisms involved in heterophase polymerization, such as nucleation, particle aggregation, mass transfer, swelling, spontaneous emulsification, and polymerization kinetics, along with the experimental evidences at hand.


The Chemical Physics of Surfaces

The Chemical Physics of Surfaces

Author: S.R. Morrison

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 448

ISBN-13: 1489924981

DOWNLOAD EBOOK

of available information. Even more importantly, some authors who have contributed substantially to an area may have been overlooked. For this I apologize. I have, however, not attempted to trace techniques or observa tions historically, so there is no implication (unless specified) that the authors referred to were or were not the originators of a given method or observation. I would like to acknowledge discussions with co-workers at SFU for input relative to their specialties, to acknowledge the help of students who have pointed out errors and difficulties in the earlier presentation, and to acknowledge the infinite patience of my wife Phyllis while I spent my sabbatical and more in libraries and punching computers. S. Roy Morrison 0 1 Contents Notation XV 1. Introduction 1 1. 1. Surface States and Surface Sites . 1 1. 1. 1. The Chemical versus Electronic Representation of the Surface. 1 1. 1. 2. The Surface State on the Band Diagram 4 1. 1. 3. The Fermi Energy in the Surface State Model. 6 1. 1. 4. Need for Both Surface Site and Surface State Models 6 1. 2. Bonding of Foreign Species to the Solid Surface 7 1. 2. 1. Types of Interaction. 7 1. 2. 2. The Chemical Bond . 10 1. 2. 3. Acid and Basic Surface Sites on Solids . 13 1. 2. 4. Adsorbate Bonding on Various Solid Types. 16 1. 2. 5. Movement of Surface Atoms: Relaxation, Reconstruction, and Relocation .


Catalysis and Electrocatalysis at Nanoparticle Surfaces

Catalysis and Electrocatalysis at Nanoparticle Surfaces

Author: Andrzej Wieckowski

Publisher: CRC Press

Published: 2003-02-19

Total Pages: 970

ISBN-13: 0203912713

DOWNLOAD EBOOK

Illustrating developments in electrochemical nanotechnology, heterogeneous catalysis, surface science and theoretical modelling, this reference describes the manipulation, characterization, control, and application of nanoparticles for enhanced catalytic activity and selectivity. It also offers experimental and synthetic strategies in nanoscale surface science. This standard-setting work clariefies several practical methods used to control the size, shape, crystal structure, and composition of nanoparticles; simulate metal-support interactions; predict nanoparticle behavior; enhance catalytic rates in gas phases; and examine catalytic functions on wet and dry surfaces.


The Chemical Physics of Surfaces

The Chemical Physics of Surfaces

Author: S. Morrison

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 428

ISBN-13: 1461580072

DOWNLOAD EBOOK

* At the present stage of development of surface science, there has seemed to be a need for a book-length review spanning the disciplines of surface physics and surface chemistry-a review to summarize and show the con nection between the observations from each discipline. The various results and theories, derived on the one hand from studies of the physical, electronic, and optical properties of surfaces and on the other hand from studies of the chemical activity of surfaces, supplement each other in the search for a realistic model of the surface. The improved understanding possible with such an interdisciplinary approach has been confirmed by recent develop ments which cannot be classified as either surface chemistry or surface physics. Specifically, recent new experimental techniques and quantum mechanical models have provided a much more accurate picture of the nature of the electronic energy levels (bonding orbitals) present at a solid surface. With this more accurate picture we are now able to reconcile the various chemical and physical models that appeared in the early literature on surfaces. The objective of this work has therefore been to describe the results and current models of surface science spanning a broad gray area between surface physics and surface chemistry with some overlap into each of these disciplines. Relevant aspects of surface chemistry are discussed; we cover chemical interactions where bonding and electronic properties dominate, but stop short of specialized topics such as surfactants or liquid/liquid interfaces.


Cluster And Nanostructure Interfaces - Proceedings Of The International Symposium

Cluster And Nanostructure Interfaces - Proceedings Of The International Symposium

Author: Purusottam Jena

Publisher: World Scientific

Published: 2000-08-21

Total Pages: 760

ISBN-13: 9814493600

DOWNLOAD EBOOK

This book deals with the evolution of the properties of clusters, nanostructures and cluster-based materials, with emphasis on the role of the interface. These materials are characterized by reduced size, dimension and symmetry, and possess many novel properties that are not commonly seen in their bulk phases. The topics include synthesis, nucleation, growth, characterization, atomic and electronic structure, dynamics, ultra-fast spectroscopy, stability; electrical, magnetic, optical, thermodynamic and catalytic properties of clusters (free and supported); cluster materials (self-assembled, ligated and embedded); nanostructures (quantum dots, wells and corrals; nanotubes and wires; colloidal and biological materials) and nano-technology (electronic, magnetic and optical devices). In addition to presenting the current status of the field, the book discusses outstanding problems and future directions.


Frontiers in Surface Science and Interface Science

Frontiers in Surface Science and Interface Science

Author: C.B. Duke

Publisher: Gulf Professional Publishing

Published: 2002-05-21

Total Pages: 1076

ISBN-13: 9780444510419

DOWNLOAD EBOOK

Any notion that surface science is all about semiconductors and coatings is laid to rest by this encyclopedic publication: Bioengineered interfaces in medicine, interstellar dust, DNA computation, conducting polymers, the surfaces of atomic nuclei - all are brought up to date. Frontiers in Surface and Interface Science - a milestone publication deserving a wide readership. It combines a sweeping expert survey of research today with an educated look into the future. It is a future that embraces surface phenomena on scales from the subatomic to the galactic, as well as traditional topics like semiconductor design, catalysis, and surface processing, modeling and characterization. And, great efforts have been made to express sophisticated ideas in an attractive and accessible way. Nanotechnology, surfaces for DNA computation, polymer-based electronics, soft surfaces, interstellar surface chemistry - all feature in this comprehensive collection.