This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.
This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.
A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university engineering, materials science, chemistry, and physics departments to introduce courses on this emerging topic. Now, Drs. Owens and Poole have revised, updated, and revamped their 2003 work, Introduction to Nanotechnology, to make it more accessible as a textbook for advanced undergraduate- and graduate-level courses on the fascinating field of nanotechnology and nanoscience. The Physics and Chemistry of Nanosolids takes a pedagogical approach to the subject and assumes only an introductory understanding of the physics and chemistry of macroscopic solids and models developed to explain properties, such as the theory of phonon and lattice vibrations and electronic band structure. The authors describe how properties depend on size in the nanometer regime and explain why these changes occur using relatively simple models of the physics and chemistry of the solid state. Additionally, this accessible book: Provides an introductory overview of the basic principles of solids Describes the various methods used to measure the properties of nanosolids Explains how and why properties change when reducing the size of solids to nano-dimensions, and what they predict when one or more dimensions of a solid has a nano-length Presents data on how various properties of solids are affected by nanosizing and examines why these changes occur Contains a chapter entirely devoted to the importance of carbon nanostructured materials and the potential applications of carbon nanostructures The Physics and Chemistry of Nanosolids is complete with a series of exercises at the end of each chapter for readers to enhance their understanding of the material presented, making this an ideal textbook for students and a valuable tutorial for technical professionals and researchers who are interested in learning more about this important topic.
Nanoscience and technology are interdisciplinary fields that bring together physicists, chemists, materials scientists, biochemists, and engineers to meet both current and future challenges, including searching for nanostructured materials for various advanced applications, clean and renewable energies for sustainable development, new technologies for environmental protection and new strategies for detecting and fighting diseases. Among the current subjects in nanoscience and technology, nanostructured materials have been attracting a huge amount of attention and have seen fast and explosive development in the past two decades. Such materials have already shown great potentials in smart materials, composite materials, information technologies, solar cells, fuel cells, secondary batteries, supercapacitors, environmental pollutants monitoring devices, air and water purification, and removal of both domestic and outdoor air pollutants. This book invited internationally renowned experts in the field of nanostructured materials from different countries, and assembled fifteen reviews and articles that discuss the synthesis, properties and applications of nanostructured materials. It also points out future research & development directions of nanostructured materials and encourages future efforts towards a better life and environment through research and development of nanostructured materials, especially via the younger generation. This book is suited for the audience of teachers, lecturers, professors, researchers, engineers, college students, graduate students, policy makers, and company managers.
This thematic volume of Advances in Chemical Engineering presents the latest advances in the exciting interdisciplinary field of nanostructured materials. Written by chemical engineers, chemists, physicists, materials scientists, and bioengineers, this volume focuses on the molecular engineering of materials at the nanometer scale for unique size-dependent properties. It describes a "bottom-up" approach to designing nanostructured systems for a variety of chemical, physical, and biological applications.
Nanostructured materials have been largely studied in the last few years. They have great potential of applications in different fields such as materials science, physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. Based on results obtained by the authors' research group during the past decade, this book comes to present novel techniques to synthesize nanostructured materials and characterize their properties such as crystallinity and crystallite size, specific surface area, particle size, morphology and catalytic activity. This book is aimed for students, researchers and engineers searching for methodologies to obtain and characterize nanostructures in details.
The development of nanostructured materials represents a new and fast evolving application of recent research in physics and chemistry. Novel experimental tools coupled with new theory have made this possible. Topics covered in this book include nanocrystals, semiconductor heterostructures, nanotubes, nanowires, and manipulation and fabrication techniques. The core of the book consists of ten lectures by five distinguished researchers, Paul Alivisatos, D.D. Awschalom, Sumio Iijima, Charles Lieber and Phaedon Avouris, presented at an Advanced Study Institute in Hong Kong in January 1999. It should interest materials physicists and chemists as well as materials scientists with an interest in the growth and characterisation of sophisticated materials.
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.
Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.
With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.