This book presents new communication and networking technologies, an area that has gained significant research attention from both academia and industry in recent years. It also discusses the development of more intelligent and efficient communication technologies, which are an essential part of current day-to-day life, and reports on recent innovations in technologies, architectures, and standards relating to these technologies. The book includes research that spans a wide range of communication and networking technologies, including wireless sensor networks, big data, Internet of Things, optical and telecommunication networks, artificial intelligence, cryptography, next-generation networks, cloud computing, and natural language processing. Moreover, it focuses on novel solutions in the context of communication and networking challenges, such as optimization algorithms, network interoperability, scalable network clustering, multicasting and fault-tolerant techniques, network authentication mechanisms, and predictive analytics.
Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
Wireless communication technology has evolved rapidly during the last 20 years. Nowadays, there are huge networks providing communication infrastructures to not only people but also to machines, such as unmanned air and ground vehicles, cars, household appliances and so on. There is no doubt that new wireless communication technologies must be developed, that support the data traffic in these emerging, large networks. While developing these technologies, it is also important to investigate the vulnerability of these technologies to different malicious attacks. In particular, spoofing and jamming attacks should be investigated and new countermeasure techniques should be developed. In this context, spoofing refers to the situation in which a receiver identifies falsified signals, that are transmitted by the spoofers, as legitimate or trustable signals. Jamming, on the other hand, refers to the transmission of radio signals that disrupt communications by decreasing the signal-to-interference-and-noise ratio (SINR) on the receiver side. In this thesis, we analyze the effects of spoofing and jamming both on global navigation satellite system (GNSS) and on massive multiple-input multiple-output (MIMO) communications. GNSS is everywhere and used to provide location information. Massive MIMO is one of the cornerstone technologies in 5G. We also propose countermeasure techniques to the studied spoofing and jamming attacks. More specifically, in paper A we analyze the effects of distributed jammers on massive MIMO and answer the following questions: Is massive MIMO more robust to distributed jammers compared with previous generation’s cellular networks? Which jamming attack strategies are the best from the jammer’s perspective, and can the jamming power be spread over space to achieve more harmful attacks? In paper B, we propose a detector for GNSS receivers that is able to detect multiple spoofers without having any prior information about the attack strategy or the number of spoofers in the environment.
Securely transferring confidential information over a wireless network is a challenging task. This book addresses security issues, not only for 5G but also beyond, using physical layer security technology and techniques.
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.
This book focuses specifically on physical layer security, a burgeoning topic in security. It consists of contributions from the leading research groups in this emerging area, and for the first time important high-impact results are collected together.
Written in a clear and concise manner, this book presents readers with an in-depth discussion of the 5G technologies that will help move society beyond its current capabilities. It perfectly illustrates how the technology itself will benefit both individual consumers and industry as the world heads towards a more connected state of being. Every technological application presented is modeled in a schematic diagram and is considered in depth through mathematical analysis and performance assessment. Furthermore, published simulation data and measurements are checked. Each chapter of 5G Physical Layer Technologies contains texts, mathematical analysis, and applications supported by figures, graphs, data tables, appendices, and a list of up to date references, along with an executive summary of the key issues. Topics covered include: the evolution of wireless communications; full duplex communications and full dimension MIMO technologies; network virtualization and wireless energy harvesting; Internet of Things and smart cities; and millimeter wave massive MIMO technology. Additional chapters look at millimeter wave propagation losses caused by atmospheric gases, rain, snow, building materials and vegetation; wireless channel modeling and array mutual coupling; massive array configurations and 3D channel modeling; massive MIMO channel estimation schemes and channel reciprocity; 3D beamforming technologies; and linear precoding strategies for multiuser massive MIMO systems. Other features include: In depth coverage of a hot topic soon to become the backbone of IoT connecting devices, machines, and vehicles Addresses the need for green communications for the 21st century Provides a comprehensive support for the advanced mathematics exploited in the book by including appendices and worked examples Contributions from the EU research programmes, the International telecommunications companies, and the International standards institutions (ITU; 3GPP; ETSI) are covered in depth Includes numerous tables and illustrations to aid the reader Fills the gap in the current literature where technologies are not explained in depth or omitted altogether 5G Physical Layer Technologies is an essential resource for undergraduate and postgraduate courses on wireless communications and technology. It is also an excellent source of information for design engineers, research and development engineers, the private-public research community, university research academics, undergraduate and postgraduate students, technical managers, service providers, and all professionals involved in the communications and technology industry.
This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-to-end architectures, it provides essential practical tools that enable graduate students, industry professionals and researchers to build more secure systems by exploiting the noise inherent to communications channels. The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical layer security schemes. Finally, applications to multi-user communications and network coding are also included.
Meet the wireless security challenges of the future with this key volume The 6th generation of wireless communication technology—known as 6G—promises to bring both revolutionary advances and unique challenges. Secure communications will be harder than ever to achieve under the new integrated ground, air, and space networking paradigm; increased connectivity creates the potential for increased vulnerability. Physical layer security, which draws upon the physical properties of the channel or network to secure information, has emerged as a promising solution to these challenges. Physical Layer Security for 6G provides a working introduction to these technologies and their burgeoning wireless applications. With particular attention to heterogeneous or distributed network scenarios, this book offers both the information-theory fundamentals and the most recent developments in physical layer security. It constitutes an essential resource for meeting the unique security challenges of 6G. Physical Layer Security for 6G readers will also find: Analysis of physical layer security in the quality of security framework (QoSec) Detailed discussion of physical layer security applications in visible light communication (VLC), intelligence reflecting surface (IRS), and more Practical use cases and demonstrations Physical Layer Security for 6G is ideal for wireless research engineers as well as advanced graduate students in wireless technology.
This book provides an accessible and comprehensive tutorial on the key enabling technologies for 5G and beyond, covering both the fundamentals and the state-of-the-art 5G standards. The book begins with a historical overview of the evolution of cellular technologies and addresses the questions on why 5G and what is 5G. Following this, six tutorial chapters describe the fundamental technology components for 5G and beyond. These include modern advancements in channel coding, multiple access, massive multiple-input and multiple-output (MIMO), network densification, unmanned aerial vehicle enabled cellular networks, and 6G wireless systems. The second part of this book consists of five chapters that introduce the basics of 5G New Radio (NR) standards developed by 3GPP. These include 5G architecture, protocols, and physical layer aspects. The third part of this book provides an overview of the key 5G NR evolution directions. These directions include ultra-reliable low-latency communication (URLLC) enhancements, operation in unlicensed spectrum, positioning, integrated access and backhaul, air-to-ground communication, and non-terrestrial networks with satellite communication.