Photovoltaic Materials

Photovoltaic Materials

Author: Bube Richard H

Publisher: World Scientific

Published: 1998-05-30

Total Pages: 292

ISBN-13: 1911298747

DOWNLOAD EBOOK

Research and development of photovoltaic solar cells is playing an ever larger practical role in energy supply and ecological conservation all over the world. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on exciting developments in the last decade. It describes the properties of the materials that play an important role in photovoltaic applications, the solar cell structures in which they are used, and the experimental and theoretical developments that have led to the most promising contenders./a


Semiconductor Materials for Solar Photovoltaic Cells

Semiconductor Materials for Solar Photovoltaic Cells

Author: M. Parans Paranthaman

Publisher: Springer

Published: 2015-09-16

Total Pages: 290

ISBN-13: 3319203312

DOWNLOAD EBOOK

This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry


McEvoy's Handbook of Photovoltaics

McEvoy's Handbook of Photovoltaics

Author: Soteris Kalogirou

Publisher: Academic Press

Published: 2017-08-24

Total Pages: 1341

ISBN-13: 0128103973

DOWNLOAD EBOOK

Practical Handbook of Photovoltaics, Third Edition, is a 'benchmark' publication for those involved in the design, manufacture and use of these devices. This fully revised handbook includes brand new sections on smart grids, net metering and the modeling of photovoltaic systems, as well as fully revised content on developments in photovoltaic applications, the economics of PV manufacturing and updated chapters on solar cell function, raw materials, photovoltaic standards, calibration and testing, all with new examples and case studies. The editor has assembled internationally-respected contributors from industry and academia around the world to make this a truly global reference. It is essential reading for electrical engineers, designers of systems, installers, architects, policymakers and physicists working with photovoltaics. Presents a cast of international experts from industry and academia to ensure the highest quality information from multiple stakeholder perspectives Covers all things photovoltaics, from the principles of solar cell function and their raw materials, to the installation and design of full photovoltaic systems Includes case studies, practical examples, and reports on the latest advances and worldwide applications


Emerging Photovoltaic Materials

Emerging Photovoltaic Materials

Author: Santosh K. Kurinec

Publisher: John Wiley & Sons

Published: 2018-11-30

Total Pages: 828

ISBN-13: 1119407672

DOWNLOAD EBOOK

This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.


Solar Panels and Photovoltaic Materials

Solar Panels and Photovoltaic Materials

Author: Beddiaf Zaidi

Publisher: BoD – Books on Demand

Published: 2018-07-11

Total Pages: 160

ISBN-13: 1789234344

DOWNLOAD EBOOK

Despite their wide availability and relatively low prices, the conventional energy sources have harmful consequences on the environment and are exhaustible. In order to circumvent these negative effects, the renewable energies in general and the photovoltaic energy in particular are becoming more and more attractive. Solar cell is an electrical device that converts light into electricity at the atomic level. These devices use inorganic or organic semiconductor materials that absorb photons with energy greater than their bandgap to promote energy carriers into their conduction band. They do not pollute the atmosphere by releasing harmful gases, do not require any fuel to produce electricity, and do not move parts so they are rugged. Solar panels have a very long life and do not need much maintenance.


Recent Developments in Photovoltaic Materials and Devices

Recent Developments in Photovoltaic Materials and Devices

Author: Natarajan Prabaharan

Publisher: BoD – Books on Demand

Published: 2019-02-13

Total Pages: 153

ISBN-13: 1789854032

DOWNLOAD EBOOK

This book covers the recent advances in solar photovoltaic materials and their innovative applications. Many problems in material science are explored for enhancing the understanding of solar cells and the development of more efficient, less costly, and more stable cells. This book is crucial and relevant at this juncture and provides a historical overview focusing primarily on the exciting developments in the last decade. This book primarily covers the different Maximum Power Point Tracking control techniques that have led to the improved speed of response of solar photovoltaics, augmented search accuracy, and superior control in the presence of perturbations such as sudden variations in illumination and temperature. Furthermore, the optimal design of a photovoltaic system based on two different approaches such as consumed power and economics is discussed.


Theory And Methods Of Photovoltaic Material Characterization: Optical And Electrical Measurement Techniques

Theory And Methods Of Photovoltaic Material Characterization: Optical And Electrical Measurement Techniques

Author: Ahrenkiel Richard K

Publisher: World Scientific

Published: 2019-02-27

Total Pages: 328

ISBN-13: 9813277149

DOWNLOAD EBOOK

This book provides an extensive review of the theory of transport and recombination properties in semiconductors. The emphasis is placed on electrical and optical techniques. There is a presentation of the latest experimental and theoretical techniques used to analyze minority-carrier lifetime. The relevant hardware and instrumentation are described. The newest techniques of lifetime mapping are presented. The issues are discussed relating to effects that mask carrier lifetime in certain device structures. The discrepancy between photoconductive and photoluminescence measurement results are analyzed.


Practical Handbook of Photovoltaics

Practical Handbook of Photovoltaics

Author: Augustin McEvoy

Publisher: Academic Press

Published: 2012

Total Pages: 1269

ISBN-13: 0123859344

DOWNLOAD EBOOK

This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of PV systems.


Advanced Silicon Materials for Photovoltaic Applications

Advanced Silicon Materials for Photovoltaic Applications

Author: Sergio Pizzini

Publisher: John Wiley & Sons

Published: 2012-06-07

Total Pages: 412

ISBN-13: 1118312163

DOWNLOAD EBOOK

Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, finding a way to manufacture a specific solar grade feedstock in large quantities, at a low cost while maintaining the quality needed, still remains a crucial issue. Thin film and quantum confinement-based silicon cells might be a complementary solution. Advanced Silicon Materials for Photovoltaic Applications has been designed to describe the full potentialities of silicon as a multipurpose material and covers: Physical, chemical and structural properties of silicon Production routes including the promise of low cost feedstock for PV applications Defect engineering and the role of impurities and defects Characterization techniques, and advanced analytical techniques for metallic and non-metallic impurities Thin film silicon and thin film solar cells Innovative quantum effects, and 3rd generation solar cells With contributions from internationally recognized authorities, this book gives a comprehensive analysis of the state-of-the-art of process technologies and material properties, essential for anyone interested in the application and development of photovoltaics.


Photovoltaic and Photoactive Materials

Photovoltaic and Photoactive Materials

Author: Joseph M. Marshall

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 361

ISBN-13: 9401006326

DOWNLOAD EBOOK

The primary objective of this NATO Advanced Study Institute (ASI) was to present an up-to-date overview of various current areas of interest in the field of photovoltaic and related photoactive materials. This is a wide-ranging subject area, of significant commercial and environmental interest, and involves major contributions from the disciplines of physics, chemistry, materials, electrical and instrumentation engineering, commercial realisation etc. Therefore, we sought to adopt an inter disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development. The lecture programme commenced with overviews of the present relevance and historical development of the subject area, plus an introduction to various underlying physical principles of importance to the materials and devices to be addressed in later lectures. Building upon this, the ASI then progressed to more detailed aspects of the subject area. We were also fortunately able to obtain a contribution from Thierry Langlois d'Estaintot of the European Commission Directorate, describing present and future EC support for activities in this field. In addition, poster sessions were held throughout the meeting, to allow participants to present and discuss their current activities. These were supported by what proved to be very effective feedback sessions (special thanks to Martin Stutzmann), prior to which groups of participants enthusiastically met (often in the bar) to identify and agree topics of common interest.