The Winter School "Nuclear Matter and Heavy Ion Collisions", a NATO Research Workshop held at Les Houches in February 89, has been devoted to recent developments in nuclear matter theory and to the study of central heavy ion collisions in which quasi macroscopic nuclear systems can be formed at various temperatures and densities. At in cident energies below 100 Me V per nucleon, the kinematic conditions are favourable for producing transient hot nuclei with temperatures of the order of a few MeV. At higher ener gies (100 MeV
Written primarily for researchers and graduate students who are new in this emerging field, this book develops the necessary tools so that readers can follow the latest advances in this subject. Readers are first guided to examine the basic informations on nucleon-nucleon collisions and the use of the nucleus as an arena to study the interaction of one nucleon with another. A good survey of the relation between nucleon-nucleon and nucleus-nucleus collisions provides the proper comparison to study phenomena involving the more exotic quark-gluon plasma. Properties of the quark-gluon plasma and signatures for its detection are discussed to aid future searches and exploration for this exotic matter. Recent experimental findings are summarised.
This unique volume captures the content of the XXXth International Workshop on High Energy Physics. The scope of this volume is much wider than just high-energy physics; it actually concerns and includes materials from all the most fundamental areas of modern physics research: high-energy physics proper, gravitation and cosmology. Presentations embrace both theory and experiment.
The proceedings of the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics cover the full range of frontline research in high energy particle physics. The latest results, both theoretical and experimental, are presented and reviews of recent developments in instrumentation and accelerator techniques are included.Volume one summarises the highly specialised topics presented in the parallel sessions while the second volume contains the review talks given by the invited speakers.
This book represents the proceedings of a symposium held during the centennial meeting of the American Physical Society. It covers the latest results in experimental heavy ion physics from the Alternating Gradient Accelerator in the US and the SpS at CERN, and summarizes the current theoretical and experimental state of the field before the commissioning of RHIC. Among the highlights are the theoretical predictions made for what the experimentalists will see in the high temperature matter expected to be formed at the new machine.
The NATO Advanced Study Institute on The Nuclear Equatioo of State was held at Peiiiscola Spain from May 22- June 3, 1989. The school was devoted to the advances, theoretical and experimental, made during the past fifteen years in the physics of nuclear matter under extreme conditions, such as high compression and high temperature. Moie than 300 people had applied for participatio- this demonstrates the tremendous interest in the various subjects presented at the school. Indeed, the topic of this school, namely the Nuclear Equatioo of State, • plays the central role in high energy heavy ion collisions; • contains the intriguing possibilities of various phase transitions (gas - vapor, meson condensation, quark - gluon plasma); • plays an important role in the static and dynamical behavior of stars, especially in supernova explosions and in neutron star stability. The investigation on the nuclear equation of state can only be accomplished in the laboratory by compressing and heating up nuclear matter and the only mechanism known to date to achieve this goal is through shock compression and -heating in violent high energy heavy ion collisions. This key mechanism has been proposed and highly disputed in of high energy heavy ion physics, the early 70's. It plays a central role in the whole field and particularly in our discussions during the two weeks at Peiiiscola.
Major developments have taken place during the last few years in the study of the nuclear paradigm as a result of recent detector and accelerator developments, and of improved theoretical models.The active use of 4-π detectors to measure the gamma decay of excited nuclei has been instrumental in exploring the consequences of extremely high rotational frequencies and excitation energies in the nuclear structure. The identification of superdeformed bands, of limiting temperature for the detection of giant resonances, and of rotational damping, are conspicuous examples of this novel type of research. Studies of the disassembling of the nucleus have been systematically carried out, and the results interpreted in terms of transport models.At even higher temperatures one expects to have a completely new regime of hot dense matter, where the hadronic properties become strongly renormalized by the medium.Furthermore, studies of the properties of the nucleon as a many-body system of quarks and gluons displaying collective degrees of freedom which are damped by couplings to more complicated states, are providing a detailed and consistent picture of the nuclear paradigm.Important progress is also taking place in situations essentially opposite to the scenarios described above, namely in the study of correlations in nuclear matter at very low temperature and density.
The 14th RCNP OSAKA International Symposium on Nuclear Reaction Dynamics of Nucleon-Hadron Many Body System was held in Osaka from December 6 to 9, 1995. The symposium covered current topics from Nucleon Spins and Mesons in Nuclei to Quark Lepton Nuclear Physics. Thus it included the field of hadron/nuclear physics from sub-GeV to multi-GeV energy region, as well as recent activities and development at RCNP. It was also intended to be a kind of winter school for young researchers/graduate students.This proceedings consists of the invited talks and lectures presented by leading physicists in the field and short oral presentations.