Synthesis of Carbon-Phosphorus Bonds, Second Edition is a working guide for the laboratory, incorporating classical approaches with the recent developments of carbon-phosphorus (C-P) bond formation. These advances include the preparation of phosphoranes - specifically in the use of transient oxophosphoranes as intermediates in organophosphorus comp
The essential new edition of the book that put hypercarbon chemistry on the map A comprehensive and contemporary treatment of the chemistry of hydrocarbons (alkanes, alkenes, alkynes, and aromatics) towards electrophiles, Hypercarbon Chemistry, Second Edition deals with all major aspects of such chemistry involved in hydrocarbon transformations, and of the structural and reaction chemistry of carboranes, mixed hydrides in which both carbon and boron atoms participate in the polyhedral molecular frameworks. Despite the firmly established tetravalency, carbon can bond simultaneously to five or more other atoms. "Hypercarbon" bonding permeates much organic, inorganic and organometallic chemistry, and the book serves as the compendium for this phenomenon. Copious diagrams illustrate the rich variety of hypercarbon structures now known, and patterns therein. Individual chapters deal with specific categories of compound (e.g. organometallics, carboranes, carbocations) or transformations that proceed through transient hypercarbon species, detailing fundamental chemistry, including reactivity, selectivity, stereochemistry, mechanistic factors and more.
Chemistry and Application of H-Phosphonates is an excellent source for those planning the synthesis of new phosphorus-containing compounds and in particular derivatives containing a phosphonate, phosphoramide or phosphonic acid diester group. The rich chemistry, low cost and easy availability of diesters of H-phosphonic acid makes them an excellent choice as synthone in a number of practically important reactions. Phosphonic acid esters are intermediates in the synthesis of important classes of compounds such as alpha-aminophosphonic acids, bisphosphonates, epoxyalkylphosphonates, alpha-hydroxyalkylphosphonates, phosphoramides, poly(alkylene H-phosphonate)s, poly(alkylene phosphate)s, nucleoside H-phosphonates. The synthesis of each of these compound classes is reviewed in detail. Alpha-Aminophosphonic acids are an important class of biologically active compounds, which have received an increasing amount of attention because they are considered to be structural analogues of the corresponding Alpha-amino acids. The utilities of alpha-aminophosphonates as peptide mimics, haptens of catalytic antibodies, enzyme inhibitors, inhibitors of cancers, tumours, viruses, antibiotics and pharmacologic agents are well documented. Alpha-Hydroxyalkanephosphonates are compounds of significant biological and medicinal applications. Dialkyl epoxyalkylphosphonates are of interest because of their use as intermediates in the synthesis of bioactive substances, and as modifiers of natural and synthetic polymers. Bisphosphonates are drugs that have been widely used in different bone diseases, and have recently been used successfully against many parasites. Poly(alkylene H-phosphonate)s and poly(alkylene phosphate)s are promising, biodegradable, water soluble, new polymer-carriers of drugs. Nucleoside H-phosphonates seem to be the most attractive candidates as starting materials in the chemical synthesis of DNA and RNA fragments. The 5'-hydrogen phosphonate-3'-azido-2',3'-dideoxythimidine is one of the most significant anti-HIV prodrug, which is currently in clinical trials. Chapters review the synthesis; physical and spectral properties (1H, 13C, 31P and 17O NMR data); characteristic reactions; important classes of compounds based on these esters of H-phosphonic acid; their application as physiologically active substances, flame retardants, catalysts, heat and light stabilizers, lubricants, scale inhibitors, polymer-carriers of drugs; preparation of H-phosphonate diesters and general procedures for conducting the most important reactions.* provides ideas for the synthesis of phosphonates, phosphoramides and diesters of phosphonic acid (new phosphorus-containing compounds)* reviews structure, spectra and biological activity of H-phosphonates and their derivatives* examines new areas of application of phosphorus-containing compounds
Nuclear Magnetic Resonance is a powerful tool, especially for the identification of 1 13 hitherto unknown organic compounds. H- and C-NMR spectroscopy is known and applied by virtually every synthetically working Organic Chemist. Con- quently, the factors governing the differences in chemical shift values, based on chemical environment, bonding, temperature, solvent, pH, etc. , are well understood, and specialty methods developed for almost every conceivable structural challenge. Proton and carbon NMR spectroscopy is part of most bachelors degree courses, with advanced methods integrated into masters degree and other graduate courses. In view of this universal knowledge about proton and carbon NMR spectr- copy within the chemical community, it is remarkable that heteronuclear NMR is still looked upon as something of a curiosity. Admittedly, most organic compounds contain only nitrogen, oxygen, and sulfur atoms, as well as the obligatory hydrogen and carbon atoms, elements that have an unfavourable isotope distribution when it comes to NMR spectroscopy. Each of these three elements has a dominant isotope: 14 16 32 16 32 N (99. 63% natural abundance), O (99. 76%), and S (95. 02%), with O, S, and 34 14 S (4. 21%) NMR silent. N has a nuclear moment I = 1 and a sizeable quadrupolar moment that makes the NMR signals usually very broad and dif cult to analyse.
Catalytic asymmetric synthesis has been one of the most active research areas in chemistry (Nobel Prize in 2001). The development of efficient chiral catalysts plays a crucial role in asymmetric catalysis. Although many chiral ligands/catalysts have been developed in the past decades, the most efficient catalysts are derived from a few core structures, called "privileged chiral catalysts". This ultimate "must have" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these "privileged catalysts". This novel presentation provides readers with a much deeper insight into the topic and makes it a must-have for organic chemists, catalytic chemists, chemists working with/on organometallics, chemists in industry, and libraries. From the contents: * BINAP * Bisphosphacycles - From DuPhos and BPE to a Diverse Set of Broadly Applied Ligands * Josiphos Ligands: From Discovery to Technical Applications * Chiral Spiro Ligands * Chiral Bisoxazoline Ligands * PHOX Ligands * Chiral Salen Complexes * BINOL * TADDOLate Ligands * Cinchona Alkaloids * Proline Derivatives
Reactivity of P-H Group of Phosphorus Based Compounds bridges the gap between inorganic and organic phosphorus compounds, providing a basis to explore the myriad possibilities for synthesis of novel low and high molecular phosphorus-containing compounds. It covers well-documented reactions in detail, including: tautomerization, oxidation, reduction, alkylation, oxidation coupling, addition reaction to: carbon-carbon multiple bonds, Schiff base, isocyanates, nitriles, epoxides; addition to carbonyl group, Kabachnik- Fields reaction, cross-coupling reaction and more. In an accessible style complete with synthetic routes and figures, the resource then covers the reactivity of multiple P-H group members: phosphines, phosphine oxides, hypophosphorus acid, H-phosphinic acids and polys(alkylene H-phosphonate). This valuable coverage supports the advancement of research and applications in this area for scientists solving a scientific problem or starting a variety of new projects, such as a new reaction for the synthesis of biologically active compounds, new methods of polymer synthesis or a new methodology for polymer modification. - Describes the diverse reactivity of the phosphorus-hydrogen group, perhaps the most powerful in organic chemistry - Includes practical information for the synthesis of catalysts, biologically active substances, flame retardants, advance materials and polymer materials - Offers a visually-accessible guide to important reactions by an internationally recognized chemist
Early Main Group Metal Catalysis gives a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. Chapters are ordered to reaction type, contain educational elements and deal with concepts illustrated by examples that cover the main developments. After a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes, a variety of catalytic reactions are described, e.g. polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, as well as enantioselective and Lewis-acid catalysis. The book addresses organic chemists and researchers in industry interested in the state-of-the-art and new possibilities of early main group metal catalysis as well as newcomers to the field. Written by a team of leaders in the field, it is a very welcome addition to the area of main group metal chemistry, and to the field of catalysis.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.