This thesis outlines the investigation of various electrode materials for Li-ion battery (LIB) applications. Li-ion batteries are widely used in various portable electronic devices owing to their compactness, light weight, longer life, design flexibility and environment friendliness. This work describes the detailed synthesis and structural studies of various novel phosphate based cathode materials and reduced graphene oxide (rGO) composites as anode materials. Their electrochemical characterization as electrode for LIBs has been investigated in detail. The thesis also includes a comprehensive introduction for non-specialists in this field. The research could benefit and will appeal to scientists, especially new researchers working in the field of energy storage.
Characterization of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. - Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods - Presents the latest advances in synthesis protocols - Presents latest techniques used in the physical and chemical characterization of nanomaterials - Covers characterization of all the important materials groups such as: carbon nanostructures, core-shell quantumdots, metal and metal oxide nanostructures, nanoferrites, polymer nanostructures and nanofibers - A broad range of applications is covered including the performance of batteries, solar cells, water filtration, catalysts, electronics, drug delivery, tissue engineering, food packaging, sensors and fuel cells - Leading researchers from industry, academia, government and private research institutes have contributed to the books
Graphene-Based Nanotechnologies for Energy and Environmental Applications explores how graphene-based materials are being used to make more efficient, reliable products and devices for energy storage and harvesting and environmental monitoring and purification. The book outlines the major sustainable, recyclable, and eco-friendly methods for using a range of graphene-based materials in innovative ways. It represents an important information source for materials scientists and engineers who want to learn more about the use of graphene-based nanomaterials to create the next generation of products and devices in energy and environmental science. Graphene-based nanotechnologies are at the heart of some of the most exciting developments in the fields of energy and environmental research. Graphene has exceptional properties, which are being used to create more effective products for electronic systems, environmental sensing devices, energy storage, electrode materials, fuel cell, novel nano-sorbents, membrane and photocatalytic degradation of environmental pollutants especially in the field of water and wastewater treatment. - Covers synthesis, preparation and application of graphene based nanomaterials from different sources - Demonstrates systematic approaches to the design, synthesis, characterization and applications of graphene-based nanocomposites in order to establish their important relationship with end-user applications - Discusses the challenges in ensuring reliability and scalability of graphene-based nanotechnologies
Nanomaterials for Energy Applications provides readers with an in-depth understanding of advanced nanomaterials and their applications in energy generation and utilization concepts. It focuses on emerging nanomaterials and applications in various energy-related fields. Describes nanomaterials for use in photovoltaic cells, solid state lighting, fuel cells, electrochemical batteries, electrochemical capacitors, superconductors, hydrogen storage, and photocatalysts. Focuses on commercial and economic aspects. Includes case studies drawn from practical research. This book is aimed at researchers, advanced students, and practicing engineers in the disciplines of materials, mechanical, electrical, and related fields of engineering.
This book highlights the versatility of graphene focusing on the background of graphene, its overall structure, superior properties, fabrication routes, characterization techniques, graphene composites/derivatives, and potential applications. A remarkable surge in interest for graphene and its applications has resulted in a substantial increase in the number of publications in terms of reviews and scientific articles, books and patents. Therefore, this book essentially addresses a wide range of graphene research and provides a great resource for beginners, students in sciences or engineering, researchers, professionals, and materials scientists.
An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.
Sustainable development has been gaining momentum in the modern world, and the use of nanomaterials in various applications is expanding. This volume explores the increasing valuable use of green nanomaterials in energy production and storage, in biomedical applications, and for agricultural and environmental sustainability. Providing an overview of the synthesis, characterization, and applications of green and sustainable nanomaterials, the volume presents a varied selection of examples in practice. Key features include: Provides valuable information on standard protocols for the synthesis of green nanomaterials Promotes advanced technologies for applications of green and sustainable nanomaterials Demonstrates numerous characterization tools for working with sustainable nanomaterials Explores application areas of the synthesized nanomaterials .
Globally, lithium ion batteries (LIBs) are leaders in the energy storage sector but there are concerns regarding load leveling of renewable energy sources as well as smart grids and limited availability of lithium resources resulting in cost increase. Therefore, sodium ion batteries (SIBs) are being researched as next-generation alternatives to LIBs due to their similar sustainability and electrochemistry. This book mainly focuses on the current research on electrode materials and proposes future directions for SIBs to meet the current challenges associated with the full cell aspect. Further, it provide insights into scientific and practical issues in the development of SIBs.