These proceedings comprise the contents of a major international conference on Perspectives of the Interacting Boson Model. Occasioned by the 20th Anniversary of this model, and attended by approx. 130 scientists from 29 countries, the topics focused on current and future research, which relates to the IBM. This model has now become one of the standard approaches to nuclear structure and has helped usher in a renaissance in that field and a new, unified perspective that focuses on dynamical symmetries and the key role of the valence nucleons. The algebraic approach fostered by the model is being extended to other fields, including nuclear reactions, molecular physics and baryon structure.
This textbook on nuclear structure takes a unique approach to the topic, explaining nuclear structure by building on a few elementary physical ideas. Intricate topics such as shell model residual interactions, the Nilsson model, and the RPA analysis of collective vibrations are explained in a simple, intuitive way so that predictions can usually be made without calculations, essentially by inspection. Frequent data comparison shows the relevance of theoretical approaches. New to this edition are chapters on exotic nuclei and radioactive beams,and correlations of collective observables. Completely new discussions are given on isopin, the shell model, nature of collective vibrations, multi- phonon states, superdeformation, bandmixing, the geometric collective model, the fermei gas model, basic properties of simple nuclear potentials, the deuteron, etc.
The beauty of physics lies in its coherence in terms of a few fundamental concepts and principles. Even physicists have occasion to marvel at the overarching reach of basic principles and their ability to account for features stretching from the microscopic sub-atomic world to the cosmological expanses of the Universe. While mathematics is its natural language, physics is mostly about patterns, connections, and relations between objects and phenomena, and it is this aspect that is emphasized in this book. Since science tries to connect phenomena that at first sight appear widely different, while boiling them down to a small set of essential principles and laws, metaphor and analogy pervade our subject. Consider the pendulum, its swing from one extreme to the other often invoked in social or economic contexts. In molecular vibrations, such as in the CO2 molecule, the quantum motions of electrons and nuclei are metaphorically the pendulums. In electromagnetic radiation, including the visible light we observe, there are not even any concrete material particles, only electric and magnetic fields executing simple harmonic motion. But, to a physicist, they are all "just a pendulum". The selection of topics reflects the author's own four-decade career in research physics and his resultant perspective on the subject. While aimed primarily at physicists, including junior students, this book also addresses other readers who are willing to think with symbols and simple algebra in understanding the physical world around us. Each chapter, on themes such as dimensions, transformations, symmetries, or maps, begins with simple examples accessible to all while connecting them later to more sophisticated realizations in more advanced topics of physics.
This volume discusses some of the main achievements and perspectives of nuclear structure physics for both experiment and theory. The main themes are: spectroscopy of exotic nuclei; from nucleon-nucleon interaction to nuclear structure; recent developments in the study of collective excitations; nuclear structure physics in other research fields.
The Conference OC Bologna 2000: Structure of the Nucleus at the Dawn of the CenturyOCO was devoted to a discipline which has seen a strong revival of research activities in the last decade. New experimental results and theoretical developments in nuclear physics will certainly make important contributions to our knowledge and understanding of Nature's fundamental building blocks. The interest aroused by the Conference among the scientific community was clearly reflected in the large number of participants. These represented the most important nuclear physics laboratories in the world. The Conference covered five major topics of modern nuclear physics: nuclear structure, nucleusOConucleus collisions, hadron dynamics, nuclear astrophysics, and transdisciplinary and peaceful applications of nuclear science. It reviewed recent progress in the field and provided a forum for the discussion of current and future research projects. Contents: Structure of Nuclei Far from the Valley of Beta-Stability; Nuclear Structure; Physics of High Spin States; Symmetries in Nuclear Structure; Collective Excitations; Nuclear Structure at Finite Temperature. Readership: Nuclear physicists."
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
The purpose of this workshop was to explore the potential of present (TRISTAN, LEP1, SLC) and future (LEP2, NLC) e⁺e⁻ colliding-beam experiments to test the standard model of electroweak and strong interactions with high precision and to probe new physics.
This thesis describes a novel and robust way of deriving a Hamiltonian of the interacting boson model based on microscopic nuclear energy density functional theory. Based on the fact that the multi-nucleon induced surface deformation of finite nucleus can be simulated by effective boson degrees of freedom, observables in the intrinsic frame, obtained from self-consistent mean-field method with a microscopic energy density functional, are mapped onto the boson analog. Thereby, the excitation spectra and the transition rates for the relevant collective states having good symmetry quantum numbers are calculated by the subsequent diagonalization of the mapped boson Hamiltonian. Because the density functional approach gives an accurate global description of nuclear bulk properties, the interacting boson model is derived for various situations of nuclear shape phenomena, including those of the exotic nuclei investigated at rare-isotope beam facilities around the world. This work provides, for the first time, crucial pieces of information about how the interacting boson model is justified and derived from nucleon degrees of freedom in a comprehensive manner.