Persistence and Extinction Dynamics in Reaction-diffusion-advection Stream Population Model with Allee Effect Growth

Persistence and Extinction Dynamics in Reaction-diffusion-advection Stream Population Model with Allee Effect Growth

Author: Yan Wang

Publisher:

Published: 2019

Total Pages: 142

ISBN-13:

DOWNLOAD EBOOK

The question how aquatic populations persist in rivers when individuals are constantly lost due to downstream drift has been termed the ``drift paradox." Reaction-diffusion-advection models have been used to describe the spatial-temporal dynamics of stream population and they provide some qualitative explanations to the paradox. Here random undirected movement of individuals in the environment is described by passive diffusion, and an advective term is used to describe the directed movement in a river caused by the flow. In this work, the effect of spatially varying Allee effect growth rate on the dynamics of reaction-diffusion-advection models for the stream population is studied. In the first part, a reaction-diffusion-advection equation with strong Allee effect growth rate is proposed to model a single species stream population in a unidirectional flow. Under biologically reasonable boundary conditions, the existence of multiple positive steady states is shown when both the diffusion coefficient and the advection rate are small, which lead to different asymptotic behavior for different initial conditions. On the other hand, when the advection rate is large, the population becomes extinct regardless of initial condition under most boundary conditions. It is shown that the population persistence or extinction depends on Allee threshold, advection rate, diffusion coefficient and initial conditions, and there is also rich transient dynamical behavior before the eventual population persistence or extinction. The dynamical behavior of a reaction-diffusion-advection model of a stream population with weak Allee effect type growth is studied in the second part. Under the open environment, it is shown that the persistence or extinction of population depends on the diffusion coefficient, advection rate and type of boundary condition, and the existence of multiple positive steady states is proved for intermediate advection rate using bifurcation theory. On the other hand, for closed environment, the stream population always persists for all diffusion coefficients and advection rates. In the last part, the dynamics of a reaction-diffusion-advection benthic-drift population model that links changes in the flow regime and habitat availability with population dynamics is studied. In the model, the stream is divided into drift zone and benthic zone, and the population is divided into two interacting compartments, individuals residing in the benthic zone and individuals dispersing in the drift zone. The benthic population growth is assumed to be of strong Allee effect type. The influence of flow speed and individual transfer rates between zones on the population persistence and extinction is considered, and the criteria of population persistence or extinction are formulated and proved. All results are proved rigorously using the theory of partial differential equation, dynamical systems. Various mathematical tools such as bifurcation methods, variational methods, and monotone methods are applied to show the existence of multiple steady state solutions of models.


Global Dynamics of Some Reaction and Diffusion Population Models in Heterogeneous Environments

Global Dynamics of Some Reaction and Diffusion Population Models in Heterogeneous Environments

Author: Xiao Yu

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This thesis is devoted to the study of the global dynamics of some reaction and diffusion models incorporating with spatial and/or temporal heterogeneities. We first investigate the spatial dynamics of a reaction-advection-diffusion model for a stream population in a time-periodic environment. Then we explore the propagation phenomena for a Lotka-Volterra reaction-advection-diffusion competition model in a periodic habitat. Moreover, we establish the theory of traveling waves and spreading speeds for time-space periodic monotone semiflows with monostable structure and apply it to a time-space version of the two-species competition model. To understand the effects of the spatial heterogeneity on the spread of Lyme disease, we propose a nonlocal and time-delayed reaction-diffusion model and obtain the global stability in terms of the basic reproduction ratio and the spreading speed of the disease. At the end of this thesis, some interesting problems are presented for further investigation.


Reaction-diffusion-advection Models for Single and Multiple Species

Reaction-diffusion-advection Models for Single and Multiple Species

Author: Andriy Bezuglyy

Publisher:

Published: 2009

Total Pages: 54

ISBN-13:

DOWNLOAD EBOOK

Abstract: The dispersal of organisms in a heterogeneous environment is rarely random as individuals can sense and respond to local environmental cues by moving towards favorable habitats. We study reaction-diffusion-advection models which describe the biased movement of species upward along the resource gradient. Our focus is on the effects of such non-random movement of organisms on the spatial distribution and dynamics of populations. For a single species at equilibrium, previous works show that the species with strong biased movement upward along the resource gradient will overmatch the resource at each global maximum of the resource. In this work we show that, in fact, the species will overmatch the resource at each local maximum of the resource. As an application, we also study a reaction-diffusion-advection model for two competing species. We assume that the two species are identical except for their dispersal strategies: Both species adopt random dispersal combined with the advection upward along the resource gradient. It was shown in previous works thatwhen both advection rates are large, a competitive exclusion phenomenon occurs: The species with relatively weaker advection drives the other to extinction, under the assumption that the resource has a unique maximum. In this work we extend this competitive exclusion result to general resource functions with finite but arbitrarily many of local maxima.


Modeling and Analysis of Population Dynamics in Advective Environments

Modeling and Analysis of Population Dynamics in Advective Environments

Author: Olga Vassilieva

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We study diffusion-reaction-advection models describing population dynamics of aquatic organisms subject to a constant drift, with reflecting upstream and outflow downstream boundary conditions. We consider three different models: single logistically growing species, two and three competing species. In the case of a single population, we determine conditions for existence, uniqueness and stability of non-trivial steady-state solutions. We analyze the dependence of such solutions on advection speed, growth rate and length of the habitat. Such analysis offers a possible explanation of the "drift paradox" in our context. We also introduce a spatially implicit ODE (nonspatial approximation) model which captures the essential behavior of the original PDE model. In the case of two competing species, we use a diffusion-advection version of the Lotka-Volterra competition model. Combining numerical and analytical techniques, in both the spatial and nonspatial approximation settings, we describe the effect of advection on competitive outcomes. Finally, in the case of three species, we use the nonspatial approximation approach to analyze and classify the possible scenarios as we change the flow speed in the habitat.


The Basic Approach to Age-Structured Population Dynamics

The Basic Approach to Age-Structured Population Dynamics

Author: Mimmo Iannelli

Publisher: Springer

Published: 2017-08-27

Total Pages: 357

ISBN-13: 9402411461

DOWNLOAD EBOOK

This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.


Allee Effects in Ecology and Conservation

Allee Effects in Ecology and Conservation

Author: Franck Courchamp

Publisher: Oxford University Press

Published: 2008-02-14

Total Pages: 267

ISBN-13: 0198570309

DOWNLOAD EBOOK

Allee effects are relevant to biologists who study rarity, and to conservationists and managers who try and protect endangered populations. This book provides an overview of the Allee effect, the mechanisms which drive it and its consequences for population dynamics, evolution and conservation.


Integrodifference Equations in Spatial Ecology

Integrodifference Equations in Spatial Ecology

Author: Frithjof Lutscher

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 385

ISBN-13: 3030292940

DOWNLOAD EBOOK

This book is the first thorough introduction to and comprehensive treatment of the theory and applications of integrodifference equations in spatial ecology. Integrodifference equations are discrete-time continuous-space dynamical systems describing the spatio-temporal dynamics of one or more populations. The book contains step-by-step model construction, explicitly solvable models, abstract theory and numerical recipes for integrodifference equations. The theory in the book is motivated and illustrated by many examples from conservation biology, biological invasions, pattern formation and other areas. In this way, the book conveys the more general message that bringing mathematical approaches and ecological questions together can generate novel insights into applications and fruitful challenges that spur future theoretical developments. The book is suitable for graduate students and experienced researchers in mathematical ecology alike.


The Mathematics Behind Biological Invasions

The Mathematics Behind Biological Invasions

Author: Mark A. Lewis

Publisher: Springer

Published: 2016-05-05

Total Pages: 373

ISBN-13: 3319320432

DOWNLOAD EBOOK

This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecology.


Spectral and Dynamical Stability of Nonlinear Waves

Spectral and Dynamical Stability of Nonlinear Waves

Author: Todd Kapitula

Publisher: Springer Science & Business Media

Published: 2013-06-06

Total Pages: 369

ISBN-13: 1461469953

DOWNLOAD EBOOK

This book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes fundamental ideas of the past 20+ years of research, carefully balancing theory and application. The book isolates and methodically develops key ideas by working through illustrative examples that are subsequently synthesized into general principles. Many of the seminal examples of stability theory, including orbital stability of the KdV solitary wave, and asymptotic stability of viscous shocks for scalar conservation laws, are treated in a textbook fashion for the first time. It presents spectral theory from a dynamical systems and functional analytic point of view, including essential and absolute spectra, and develops general nonlinear stability results for dissipative and Hamiltonian systems. The structure of the linear eigenvalue problem for Hamiltonian systems is carefully developed, including the Krein signature and related stability indices. The Evans function for the detection of point spectra is carefully developed through a series of frameworks of increasing complexity. Applications of the Evans function to the Orientation index, edge bifurcations, and large domain limits are developed through illustrative examples. The book is intended for first or second year graduate students in mathematics, or those with equivalent mathematical maturity. It is highly illustrated and there are many exercises scattered throughout the text that highlight and emphasize the key concepts. Upon completion of the book, the reader will be in an excellent position to understand and contribute to current research in nonlinear stability.