Permutation Groups and Cartesian Decompositions

Permutation Groups and Cartesian Decompositions

Author: Cheryl E. Praeger

Publisher: Cambridge University Press

Published: 2018-05-03

Total Pages: 338

ISBN-13: 131699905X

DOWNLOAD EBOOK

Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.


Permutation Groups and Cartesian Decompositions

Permutation Groups and Cartesian Decompositions

Author: Cheryl E. Praeger

Publisher: London Mathematical Society Le

Published: 2018-05-03

Total Pages: 338

ISBN-13: 0521675065

DOWNLOAD EBOOK

Concise introduction to permutation groups, focusing on invariant cartesian decompositions and applications in algebra and combinatorics.


Groups, Combinatorics & Geometry

Groups, Combinatorics & Geometry

Author: A. A. Ivanov

Publisher: World Scientific

Published: 2003

Total Pages: 347

ISBN-13: 9812383123

DOWNLOAD EBOOK

"This book contains the proceedings of the L.M.S. Durham Symposium on Groups, Geometry and Combinatorics, July 16-26, 2001"--P. v.


Groups and Graphs, Designs and Dynamics

Groups and Graphs, Designs and Dynamics

Author: R. A. Bailey

Publisher: Cambridge University Press

Published: 2024-05-30

Total Pages: 452

ISBN-13: 1009465945

DOWNLOAD EBOOK

This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.


Algebraic Combinatorics and the Monster Group

Algebraic Combinatorics and the Monster Group

Author: Alexander A. Ivanov

Publisher: Cambridge University Press

Published: 2023-08-17

Total Pages: 583

ISBN-13: 1009338048

DOWNLOAD EBOOK

The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.


(Co)end Calculus

(Co)end Calculus

Author: Fosco Loregian

Publisher: Cambridge University Press

Published: 2021-07-22

Total Pages: 331

ISBN-13: 1108746128

DOWNLOAD EBOOK

This easy-to-cite handbook gives the first systematic treatment of the (co)end calculus in category theory and its applications.


Stacks Project Expository Collection

Stacks Project Expository Collection

Author: Pieter Belmans

Publisher: Cambridge University Press

Published: 2022-09-30

Total Pages: 308

ISBN-13: 1009063286

DOWNLOAD EBOOK

The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.


Equivariant Topology and Derived Algebra

Equivariant Topology and Derived Algebra

Author: Scott Balchin

Publisher: Cambridge University Press

Published: 2021-11-18

Total Pages: 357

ISBN-13: 1108931944

DOWNLOAD EBOOK

A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.


Facets of Algebraic Geometry: Volume 2

Facets of Algebraic Geometry: Volume 2

Author: Paolo Aluffi

Publisher: Cambridge University Press

Published: 2022-04-07

Total Pages: 396

ISBN-13: 1108890547

DOWNLOAD EBOOK

Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the second of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.


Facets of Algebraic Geometry: Volume 1

Facets of Algebraic Geometry: Volume 1

Author: Paolo Aluffi

Publisher: Cambridge University Press

Published: 2022-04-07

Total Pages: 418

ISBN-13: 1108890539

DOWNLOAD EBOOK

Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the first of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured topics include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.