Clinical Immunology

Clinical Immunology

Author: Robert R. Rich

Publisher: Mosby Incorporated

Published: 2008

Total Pages: 1578

ISBN-13: 9780323044042

DOWNLOAD EBOOK

Offers answers to challenges in clinical immunology. This book contains immunology knowledge and includes a companion web site to give you two ways to find the answers you need.


Etiology of Parkinson's Disease

Etiology of Parkinson's Disease

Author: Jonas H. Ellenberg

Publisher: CRC Press

Published: 1995-03-01

Total Pages: 600

ISBN-13: 9780824788230

DOWNLOAD EBOOK

This comprehensive reference provides a detailed overview of current concepts regarding the cause of Parkinson's disease-emphasizing the issues involved in the design, implementation, and analysis of epidemiological studies of parkinsonism.


Inflammation and Oxidative Stress in Neurological Disorders

Inflammation and Oxidative Stress in Neurological Disorders

Author: Akhlaq A. Farooqui

Publisher: Springer Science & Business Media

Published: 2014-01-27

Total Pages: 364

ISBN-13: 3319041118

DOWNLOAD EBOOK

Unless new discoveries are made in the prevention or treatment of stroke, Alzheimer's Disease and depression, the number of patients with these diseases is sure to increase dramatically by the year 2050. Thus, developing strategies to retard or delay the onset of stroke, AD and depression these neurological disorders is of critical important. The present monograph will provide current and comprehensive information on the relationship between neuroinflammation and oxidative stress in age-related neurological disorders at the molecular level. The information described in this monograph on lifestyle (diet and exercise), genes and age is intended to facilitate and promote new discoveries for the treatment of age-related neurological disorders.


Apolipoprotein E and Alzheimer’s Disease

Apolipoprotein E and Alzheimer’s Disease

Author: A.D. Roses

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 208

ISBN-13: 3642801099

DOWNLOAD EBOOK

There is now considerable genetic evidence that the type 4 allele of the apolipoprotein E gene is a major susceptibility factor associated with late-onset Alzheimer's disease, the common form of the disease defined as starting after sixty years of age. The role of apolipoprotein E in normal brain metabolism and in the pathogenesis of Alzheimer's disease are new and exciting avenues of research. This book, written by the most outstanding scientists in this new filed, is the first presentation of results concerning the implications of apolipoprotein E on the genetics, cell biology, neuropathology, biochemistry, and therapeutic management of Alzheimer's disease.


Inflammation, 4 Volume Set

Inflammation, 4 Volume Set

Author: Jean-Marc Cavaillon

Publisher: John Wiley & Sons

Published: 2018-02-20

Total Pages: 1818

ISBN-13: 3527338993

DOWNLOAD EBOOK

Dieses Fachbuch erläutert die molekularen Grundlagen von Entzündungen, spannt den Bogen zu Infektionskrankheiten und den Zusammenhang zwischen Entzündungen und chronischen Erkrankungen, behandelt abschließend den Heilungsprozess und zeigt Therapiemöglichkeiten.


Leucine-Rich Repeat Kinase 2 (LRRK2)

Leucine-Rich Repeat Kinase 2 (LRRK2)

Author: Hardy J. Rideout

Publisher: Springer

Published: 2017-03-28

Total Pages: 280

ISBN-13: 3319499696

DOWNLOAD EBOOK

This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.


Pathogenesis of Encephalitis

Pathogenesis of Encephalitis

Author: Daisuke Hayasaka

Publisher: BoD – Books on Demand

Published: 2011-12-09

Total Pages: 358

ISBN-13: 9533077417

DOWNLOAD EBOOK

Many infectious agents, such as viruses, bacteria, and parasites, can cause inflammation of the central nervous system (CNS). Encephalitis is an inflammation of the brain parenchyma, which may result in a more advanced and serious disease meningoencephalitis. To establish accurate diagnosis and develop effective vaccines and drugs to overcome this disease, it is important to understand and elucidate the mechanism of its pathogenesis. This book, which is divided into four sections, provides comprehensive commentaries on encephalitis. The first section (6 chapters) covers diagnosis and clinical symptoms of encephalitis with some neurological disorders. The second section (5 chapters) reviews some virus infections with the outlines of inflammatory and chemokine responses. The third section (7 chapters) deals with the non-viral causative agents of encephalitis. The last section (4 chapters) discusses the experimental model of encephalitis. The different chapters of this book provide valuable and important information not only to the researchers, but also to the physician and health care workers.


Micro- and Nanotechnology in Vaccine Development

Micro- and Nanotechnology in Vaccine Development

Author: Mariusz Skwarczynski

Publisher: William Andrew

Published: 2016-09-20

Total Pages: 462

ISBN-13: 0323400299

DOWNLOAD EBOOK

This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. - Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development - Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development - Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines


The Propagation of Neurodegenerative Diseases by Inflammation and Exosomes

The Propagation of Neurodegenerative Diseases by Inflammation and Exosomes

Author: Valerie Sackmann

Publisher: Linköping University Electronic Press

Published: 2019-10-16

Total Pages: 69

ISBN-13: 9175190125

DOWNLOAD EBOOK

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative diseases with rates increasing along with the ageing global population. Despite best efforts, we still do not understand the etiopathogenesis of these diseases and there are no effective disease-modifying treatments. Cognitive deficiencies or motor complications that emerge during AD and PD are thought to be the result of the accumulation of misfolded, aggregate-prone proteins, such as amyloid-? (A?) and tau or ?-synuclein (?-syn), respectively. Growing evidence suggests that prefibrillar oligomers of A? and ?-syn (oA? and o?-syn) are key contributors to the progression of these diseases. The progressive accumulation of these proteins leads to a gradual spread of pathology throughout interconnected brain regions, but the mechanisms by which this spreading occurs are still largely unknown. Neuroinflammation has been recognised as an important contributor to neurodegenerative disease. It is hypothesised that a pro-inflammatory environment initiated by the innate immune system, either through activation from A? itself or indirectly through neuronal injury signals in AD. These phenomena are thought to either cause or accelerate AD, such that an anti-inflammatory approach may be neuroprotective. In paper I, we investigated whether different inflammatory environments affected the transfer of oA? between neuron-like cells, in addition to investigating inter- and intracellular protein changes. This study demonstrated that an anti-inflammatory environment reduces the transfer of oA? between cells. We also provide evidence that these cells begin to take on the “phenotype” of the inflammatory milieu, while also demonstrating that the expression profile of endosomal/lysosomal and protein trafficking proteins is altered during these conditions. Small extracellular vesicles called exosomes, which are key players in cell to cell communication, have been proposed to play an influential role in spreading neurodegenerative proteins between cells. Exosomes are small membranous vesicles that are formed by the inward budding of multivesicular bodies (MVBs). These MVBs can then merge with the plasma membrane to be released into the extracellular environment as vesicles, which serve as vehicles for transferring proteins, lipids, and mRNAs between cells. The ESCRT-dependent pathway is the most understood mechanism underlying exosome biogenesis. However, exosomes can also be formed through ESCRT-independent pathways, including through the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2), which produces ceramide. Paper II investigated whether exosomes formed through an ESCRT-independent pathway plays a significant role in the transfer of o?-syn between neuron-like cells. As oxidative stress is a common feature in PD brains, which in turn dysregulates nSMase2 activity, we also tested our model under hypoxic conditions. Inhibition of nSMase2 significantly reduced the transfer of o?-syn between cells but also resulted in decreased ?-syn aggregation. Hypoxia did not influence o?-syn transfer, however, it significantly dysregulated the sphingolipid composition, which may be important for ?-syn binding to exosomes and exosome communication. During AD and PD, there is a noted reduction in the effectiveness of autophagy, a process critical to cellular proteostasis. Recent studies have uncovered shared regulatory mechanisms of exosome biogenesis and autophagy, suggesting that they are closely linked. Previous findings have shown that inhibition of autophagy in AD mice mediates A? trafficking through altering the secretion of A? in MVBs. To further study this effect, we investigated the interplay between autophagy and exosome secretion using ATG7 knock-out x APPNL-F knock-in AD mice in paper III. These autophagy-deficient AD mice had a reduced extracellular A? plaque load, but increased intracellular A?, which was found to be assembled into higher-ordered assemblies. While exosomal secretion was dysregulated in these mice, the amount of A? packaged into the exosomes was unchanged. Lastly, one of the biggest challenges in developing effective treatments for AD is the lack of early diagnosis of living patients. As the connection between exosomes and the spread of neurodegenerative proteins is still relatively new, there remains a diagnostic potential to be explored with exosomes. Paper IV aimed to develop a new diagnostic assay to detect oA? in exosomes isolated from human cerebrospinal fluid. Although exosomal oA? was readily detected in some of these samples, the assay’s sensitivity requires additional optimisation before it can be further validated for the clinic. In summary, the studies presented in this thesis have furthered our understanding of how inflammation, autophagy, and exosomes contribute to the intercellular transmission of AD and PD associated proteins. We have shown that an anti-inflammatory approach may slow down the progression of AD through reducing the transfer of oA? between cells. We also provide novel findings relating to the biogenesis of exosomes, which in turn affected the ability of exosomes to transmit neurodegenerative proteins between cells, and their association with autophagic processes. Finally, we have investigated the feasibility of exosomes as an early AD diagnostic marker. This work has helped to elucidate some of the mechanisms underlying the progression of neurodegenerative diseases, which may be useful targets for the investigation of new therapeutic avenues.