Performance testing for Superpave and structural validation

Performance testing for Superpave and structural validation

Author: Nelson Gibson

Publisher:

Published: 2012

Total Pages: 253

ISBN-13:

DOWNLOAD EBOOK

The primary objective of this full-scale accelerated pavement testing was to evaluate the performance of unmodified and polymer modified asphalt binders and to recommend improved specification tests over existing SUperior PERforming Asphalt PAVEment (Superpave) binder performance grading methodologies. Candidate replacement tests were evaluated via their ability to discern fatigue cracking resistance and rutting. Two fatigue cracking specification tests were identified as more capable in capturing performance than others: binder yield energy and critical tip opening displacement. Two rutting specification tests that quantify irrecoverable deformations exhibited the best strength to capture rutting: multiple stress creep and recovery and oscillatory-based nonrecoverable stiffness. Based on the full-scale performance and laboratory tests, crumb rubber (recycled tires) modified asphalt (Arizona wet process) was shown to significantly slow or stop the growth of fatigue cracks in a composite asphalt pavement structure. A hybrid technique to modify asphalt with a combination of crumb rubber and conventional polymers (terminally blended) exhibited good fatigue cracking resistance relative to the control binder. Also, a simple addition of polyester fibers to asphalt mix was shown to have high resistance to fatigue cracking without the use of polymer modification. The research study also quantified the capabilities of the National Cooperative Highway Research Program's mechanistic-empirical pavement design and analysis methodologies to predict rutting and fatigue cracking of modified asphalts that were not captured in the calibration data from the Long-Term Pavement Performance program. Falling weight deflectometer, multidepth deflectometer, and strain gauge instrumentation were used to measure pavement response. The results illustrated that the nationally calibrated mechanistic-empirical performance models could differentiate between structural asphalt thickness but had difficulty differentiating modified from unmodified asphalt binder performance. Nonetheless, the mechanistic-empirical performance ranking and predictions were enhanced and improved using mixture-specific performance tests currently being implemented using the asphalt mixture performance tester.


The Roles of Accelerated Pavement Testing in Pavement Sustainability

The Roles of Accelerated Pavement Testing in Pavement Sustainability

Author: José P. Aguiar-Moya

Publisher: Springer

Published: 2016-09-15

Total Pages: 877

ISBN-13: 3319427970

DOWNLOAD EBOOK

This compendium gathers the latest advances in the area of Accelerated Pavement Testing (APT), a means of testing full-scale pavement construction in an accelerated manner for structural deterioration in a very short term. Compiling novel research results presented at the 5th International Conference on Accelerated Pavement Testing, San Jose, Costa Rica, the volume serves as a timely and highly relevant resource for materials scientists and engineers interested in determining the performance of a pavement structure during its service life (10+ years) in a few weeks or months.


Advances in Pavement Design through Full-scale Accelerated Pavement Testing

Advances in Pavement Design through Full-scale Accelerated Pavement Testing

Author: David Jones

Publisher: CRC Press

Published: 2012-10-08

Total Pages: 560

ISBN-13: 0203073010

DOWNLOAD EBOOK

Pack: Book and CDInternationally, full-scale accelerated pavement testing, either on test roads or linear/circular test tracks, has proven to be a valuable tool that fills the gap between models and laboratory tests and long-term experiments on in-service pavements. Accelerated pavement testing is used to improve understanding of pavement behavior,


Significant Findings from Full-scale Accelerated Pavement Testing

Significant Findings from Full-scale Accelerated Pavement Testing

Author: Wynand JvdM. Steyn

Publisher: Transportation Research Board

Published: 2012

Total Pages: 257

ISBN-13: 0309223660

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 433: Significant Findings from Full-Scale Accelerated Pavement Testing documents and summarizes significant findings from the various experimental activities associated with full-scale accelerated pavement testing (f-sAPT) programs that have taken place between 2000 and 2011. The report also identifies gaps in knowledge related to f-sAPT and where future research may be needed. NCHRP Synthesis 433 is designed to expand the f-sAPT base of knowledge documented in NCHRP Syntheses 325 and 235, both with the same title of Significant Findings from Full-Scale Accelerated Pavement Testing. f-sAPT is the controlled application of a wheel loading, at or above the appropriate legal load limit, to a pavement system to determine pavement response in a compressed time period. The acceleration of damage is achieved by one or more of the following factors: increased repetitions, modified loading conditions, imposed climatic conditions, and thinner pavements with a decreased structural capacity which have shorter design lives"--


Advances in Materials and Pavement Performance Prediction II

Advances in Materials and Pavement Performance Prediction II

Author: K. Anupam

Publisher: CRC Press

Published: 2020-12-08

Total Pages: 501

ISBN-13: 1000343480

DOWNLOAD EBOOK

Inspired from the legacy of the previous four 3DFEM conferences held in Delft and Athens as well as the successful 2018 AM3P conference held in Doha, the 2020 AM3P conference continues the pavement mechanics theme including pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance. The AM3P conference is organized by the Standing International Advisory Committee (SIAC), at the time of this publication chaired by Professors Tom Scarpas, Eyad Masad, and Amit Bhasin. Advances in Materials and Pavement Performance Prediction II includes over 111 papers presented at the 2020 AM3P Conference. The technical topics covered include: - rigid pavements - pavement geotechnics - statistical and data tools in pavement engineering - pavement structures - asphalt mixtures - asphalt binders The book will be invaluable to academics and engineers involved or interested in pavement engineering, pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance.


Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9

Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9

Author: Christiane Raab

Publisher: Springer Nature

Published: 2020-06-19

Total Pages: 955

ISBN-13: 3030486796

DOWNLOAD EBOOK

This book gathers the proceedings of an international conference held at Empa (Swiss Federal Laboratories for materials Science and Technology) in Dübendorf, Switzerland, in July 2020. The conference series was established by the International Society of Maintenance and Rehabilitation of Transport Infrastructure (iSMARTi) for promoting and discussing state-of-the-art design, maintenance, rehabilitation and management of pavements. The inaugural conference was held at Mackenzie Presbyterian University in Sao Paulo, Brazil, in 2000. The series has steadily grown over the past 20 years, with installments hosted in various countries all over the world. The respective contributions share the latest insights from research and practice in the maintenance and rehabilitation of pavements, and discuss advanced materials, technologies and solutions for achieving an even more sustainable and environmentally friendly infrastructure.


Simple Performance Tester for Superpave Mix Design

Simple Performance Tester for Superpave Mix Design

Author: Ramon Francis Bonaquist

Publisher: Transportation Research Board

Published: 2003

Total Pages: 169

ISBN-13: 0309087821

DOWNLOAD EBOOK

The global response to COVID-19 has demonstrated the importance of vigilance and preparedness for infectious diseases, particularly influenza. There is a need for more effective influenza vaccines and modern manufacturing technologies that are adaptable and scalable to meet demand during a pandemic. The rapid development of COVID-19 vaccines has demonstrated what is possible with extensive data sharing, researchers who have the necessary resources and novel technologies to conduct and apply their research, rolling review by regulators, and public-private partnerships. As demonstrated throughout the response to COVID-19, the process of research and development of novel vaccines can be significantly optimized when stakeholders are provided with the resources and technologies needed to support their response. Vaccine Research and Development to Advance Pandemic and Seasonal Influenza Preparedness and Response focuses on how to leverage the knowledge gained from the COVID-19 pandemic to optimize vaccine research and development (R&D) to support the prevention and control of seasonal and pandemic influenza. The committee's findings address four dimensions of vaccine R&D: (1) basic and translational science, (2) clinical science, (3) manufacturing science, and (4) regulatory science.