Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Beginning with the triple impulses of Naturalism, symbolism and the grotesque, the bulk of the book concentrates on the most famous directors of this century - Stanislavski, Reinhardt, Graig, Meyerhold, Piscator, Brecht, Artuaud and Grotowski. Braun's guide is more practical than theoretical, delineating how each director changed the tradition that came before him.
Hackman (social and organizational psychology, Harvard U.) identifies the factors of being a team leader that will enable a team to work together efficiently to achieve organizational goals. He suggests that five conditions are necessary: having a real team, a compelling direction, an enabling team structure, a supportive organizational context, and expert team coaching. He integrates insights from interviews with team leaders with concepts from the social sciences. Annotation copyrighted by Book News, Inc., Portland, OR
Performance Success teaches a set of skills so that a musician can be ready to go out and sing or play at his or her highest level, working with energies that might otherwise be wasted in unproductive ways. This is a book of skills and exercises, prepared by a master teacher.
Comprehensive coverage of recent developments in phase-locked loop technology The rapid growth of high-speed semiconductor and communication technologies has helped make phase-locked loops (PLLs) an essential part of memories, microprocessors, radio-frequency (RF) transceivers, broadband data communication systems, and other burgeoning fields. Complementing his 1996 Monolithic Phase-Locked Loops and Clock Recovery Circuits (Wiley-IEEE Press), Behzad Razavi now has collected the most important recent writing on PLL into a comprehensive, self-contained look at PLL devices, circuits, and architectures. Phase-Locking in High-Performance Systems: From Devices to Architectures' five original tutorials and eighty-three key papers provide an eminently readable foundation in phase-locked systems. Analog and digital circuit designers will glean a wide range of practical information from the book's . . . * Tutorials dealing with devices, delay-locked loops (DLLs), fractional-N synthesizers, bang-bang PLLs, and simulation of phase noise and jitter * In-depth discussions of passive devices such as inductors, transformers, and varactors * Papers on the analysis of phase noise and jitter in various types of oscillators * Concentrated examinations of building blocks, including the design of oscillators, frequency dividers, and phase/frequency detectors * Articles addressing the problem of clock generation by phase-locking for timing and digital applications, RF synthesis, and the application of phase-locking to clock and data recovery circuits In tandem with its companion volume, Phase-Locking in High-Performance Systems: From Devices to Architectures is a superb reference for anyone working on, or seeking to better understand, this rapidly-developing and increasingly central technology.
Essentials in Modern HPLC Separations, Second Edition discusses the role of separation in high performance liquid chromatography (HPLC). This new and updated edition systematically presents basic concepts as well as new developments in HPLC. Starting with a description of basic concepts, it provides important guidance for the practical utilization of various HPLC procedures, such as the selection of the HPLC type, proper choice of the chromatographic column, selection of mobile phase and selection of the method of detection, all of which are in correlation with the physico-chemical characteristics of the compounds separated. Every chapter has been carefully reviewed, with several new sections added to bring the book completely up-to-date. Hence, it is a valuable reference for students and professors in chemistry. - Provides a thoroughly updated resource, with an entirely new section on Computer-aided Method Development in HPLC and new subsections on miniaturization and automation in HPLC, chemometric aspects of HPLC, green solvent use in HPLC, and more - Includes insights into the chromatographic process to find the optimum solution for analyzing complex samples - Presents a basis for understanding the utilization of modern HPLC for applications, particularly for the analysis of pharmaceutical, biological, food, beverage and environmental samples
This comprehensive volume addresses the mechanics of flight through a combination of theory and applications. Topics are presented in a logical order and coverage within each is extensive, including a detailed discussion on the quaterion formulation for six-degree-of-freedom flight.
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
As spinning is still involved in around 60% of all aircraft accidents (BFU, 1985 and Belcastro, 2009), this aerodynamic phenomenon is still not fully understood. As U.S. and European Certification Specifications do not require recoveries from fully developed spins of Normal Category aeroplanes, certification test flights will not discover aeroplane mass and centre of gravity combinations which may result in unrecoverable spins. This book aims to contribute to a better understanding of the spin phenomenon through investigating the spin regime for normal, utility and aerobatic aircraft, and to explain what happens to the aircraft in terms of the aerodynamics, flight mechanics and the aircraft stability. The approach used is to vary the main geometric parameters such as the centre of gravity position and the aeroplane’s mass across the flight envelope, and to investigate the subsequent effect on the main spin characteristic parameters such as the angle of attack, pitch angle, sideslip angle, rotational rates, and recovery time. First of all, a literature review sums up the range of technical aspects that affect the problem of spinning. It reviews the experimental measurement techniques used, theoretical methods developed and flight test results obtained by previous researchers. The published results have been studied to extract the effect on spinning of aircraft geometry, control surface effectiveness, flight operational parameters and atmospheric effects. Consideration is also made of the influence on human performance of spinning, the current spin regulations and the available training material for pilots. A conventional-geometry, single-engine low-wing aeroplane, the basic trainer Fuji FA-200-160, has been instrumented with a proven digital flight measurement system and 27 spins have been systematically conducted inside and outside the certified flight envelope. The accuracy of the flight measurements is ensured through effective calibration, and the choice of sensors has varied through the study, with earlier sensors suffering from more drift than the current sensors (Belcastro, 2009 and Schrader, 2013). In-flight parameter data collected includes left and right wing α and β-angles, roll-pitch-yaw angles and corresponding rates, all control surface deflections, vertical speeds, altitude losses and the aeroplane’s accelerations in all three directions. Such data have been statistically analysed. The pitch behaviour has been mathematically modelled on the basis of the gathered flight test data. Nine observations have been proposed. These mainly cover the effects of centre of gravity and aircraft mass variations on spin characteristic behaviour. They have all been proven as true through the results of this thesis. The final observation concerns the generalisation of the Fuji results, to the spin behaviour of other aircraft in the same category. These observations can be used to improve flight test programmes, aircraft design processes, flight training materials and hence contribute strongly to better flight safety.