Performance Modeling and Optimization Solutions for Networking Systems

Performance Modeling and Optimization Solutions for Networking Systems

Author: Jian Zhao

Publisher: Open Dissertation Press

Published: 2017-01-26

Total Pages:

ISBN-13: 9781361333075

DOWNLOAD EBOOK

This dissertation, "Performance Modeling and Optimization Solutions for Networking Systems" by Jian, Zhao, 趙建, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis targets at modeling and resolving practical problems using mathematical tools in two representative networking systems nowadays, i.e., peer-to-peer (P2P) video streaming system and cloud computing system. In the first part, we study how to mitigate the following tussle between content service providers and ISPs in P2P video streaming systems: network-agnostic P2P protocol designs bring lots of inter-ISP traffic and increase traffic relay cost of ISPs; in turn, ISPs start to throttle P2P packets, which significantly deteriorates P2P streaming performance. First, we investigate the problem in a mesh-based P2P live streaming system. We use end-to-end streaming delays as performance, and quantify the amount of inter-ISP traffic with the number of copies of the live streams imported into each ISP. Considering multiple ISPs at different bandwidth levels, we model the generic relationship between the volume of inter-ISP traffic and streaming performance, which provides useful insights on the design of effective locality-aware peer selection protocols and server deployment strategies across multiple ISPs. Next, we study a similar problem in a hybrid P2P-cloud CDN system for VoD streaming. We characterize the relationship between the costly bandwidth consumption from the cloud CDN and the inter-ISP traffic. We apply a loss network model to derive the bandwidth consumption under any given chunk distribution pattern among peer caches and any streaming request dispatching strategy among ISPs, and derive the optimal peer caching and request dispatching strategies which minimize the bandwidth demand from the cloud CDN. Based on the fundamental insights from our analytical results, we design a locality-aware, hybrid P2P-cloud CDN streaming protocol. In the second part, we study the profit maximization and cost minimization problems in Infrastructure-as- a- Service (IaaS) cloud systems. The first problem is how a geo-distributed cloud system should price its datacenter resources at different locations, such that its overall profit is maximized over long-term operation. We design an efficient online algorithm for dynamic pricing of VM resources across datacenters, together with job scheduling and server provisioning in each datacenter, to maximize the cloud's profit over the long run. Theoretical analysis shows that our algorithm can schedule jobs within their respective deadlines, while achieving a time-averaged overall profit closely approaching the offline maximum, which is computed by assuming perfect information on future job arrivals is freely available. The second problem is how federated clouds should trade their computing resources among each other to reduce the cost, by exploiting diversities of different clouds' workloads and operational costs. We formulate a global cost minimization problem among multiple clouds under the cooperative scenario where each individual cloud's workload and cost information is publicly available. Taking into considerations jobs with disparate length, a non-preemptive approximation algorithm for leftover job migration and new job scheduling is designed. Given to the selfishness of individual clouds, we further design a randomized double auction mechanism to elicit clouds' truthful bidding for buying or selling virtual machines. The auction mechanism is proven to be truthful, and to guarantee the same approximation ratio to what the cooperative approximation algorit


Performance Modeling and Engineering

Performance Modeling and Engineering

Author: Zhen Liu

Publisher: Springer Science & Business Media

Published: 2008-04-12

Total Pages: 228

ISBN-13: 0387793615

DOWNLOAD EBOOK

With the fast development of networking and software technologies, information processing infrastructure and applications have been growing at an impressive rate in both size and complexity, to such a degree that the design and development of high performance and scalable data processing systems and networks have become an ever-challenging issue. As a result, the use of performance modeling and m- surementtechniquesas a critical step in designand developmenthas becomea c- mon practice. Research and developmenton methodologyand tools of performance modeling and performance engineering have gained further importance in order to improve the performance and scalability of these systems. Since the seminal work of A. K. Erlang almost a century ago on the mod- ing of telephone traf c, performance modeling and measurement have grown into a discipline and have been evolving both in their methodologies and in the areas in which they are applied. It is noteworthy that various mathematical techniques were brought into this eld, including in particular probability theory, stochastic processes, statistics, complex analysis, stochastic calculus, stochastic comparison, optimization, control theory, machine learning and information theory. The app- cation areas extended from telephone networks to Internet and Web applications, from computer systems to computer software, from manufacturing systems to s- ply chain, from call centers to workforce management.


Performance Models and Risk Management in Communications Systems

Performance Models and Risk Management in Communications Systems

Author: Nalân Gülpınar

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 262

ISBN-13: 1441905340

DOWNLOAD EBOOK

This volume covers recent developments in the design, operation, and management of mobile telecommunication and computer systems. Uncertainty regarding loading and system parameters leads to challenging optimization and robustness issues. Stochastic modeling combined with optimization theory ensures the optimum end-to-end performance of telecommunication or computer network systems. In view of the diverse design options possible, supporting models have many adjustable parameters and choosing the best set for a particular performance objective is delicate and time-consuming. An optimization based approach determines the optimal possible allocation for these parameters. Researchers and graduate students working at the interface of telecommunications and operations research will benefit from this book. Due to the practical approach, this book will also serve as a reference tool for scientists and engineers in telecommunication and computer networks who depend upon optimization.


Modeling and Optimization in Software-Defined Networks

Modeling and Optimization in Software-Defined Networks

Author: Konstantinos Poularakis

Publisher: Morgan & Claypool Publishers

Published: 2021-10-04

Total Pages: 176

ISBN-13: 1636391605

DOWNLOAD EBOOK

This book provides a quick reference and insights into modeling and optimization of software-defined networks (SDNs). It covers various algorithms and approaches that have been developed for optimizations related to the control plane, the considerable research related to data plane optimization, and topics that have significant potential for research and advances to the state-of-the-art in SDN. Over the past ten years, network programmability has transitioned from research concepts to more mainstream technology through the advent of technologies amenable to programmability such as service chaining, virtual network functions, and programmability of the data plane. However, the rapid development in SDN technologies has been the key driver behind its evolution. The logically centralized abstraction of network states enabled by SDN facilitates programmability and use of sophisticated optimization and control algorithms for enhancing network performance, policy management, and security.Furthermore, the centralized aggregation of network telemetry facilitates use of data-driven machine learning-based methods. To fully unleash the power of this new SDN paradigm, though, various architectural design, deployment, and operations questions need to be addressed. Associated with these are various modeling, resource allocation, and optimization opportunities.The book covers these opportunities and associated challenges, which represent a ``call to arms'' for the SDN community to develop new modeling and optimization methods that will complement or improve on the current norms.


Performance Modeling and Engineering

Performance Modeling and Engineering

Author: Zhen Liu

Publisher: Springer

Published: 2008-11-01

Total Pages: 219

ISBN-13: 9780387523385

DOWNLOAD EBOOK

With the fast development of networking and software technologies, information processing infrastructure and applications have been growing at an impressive rate in both size and complexity, to such a degree that the design and development of high performance and scalable data processing systems and networks have become an ever-challenging issue. As a result, the use of performance modeling and m- surementtechniquesas a critical step in designand developmenthas becomea c- mon practice. Research and developmenton methodologyand tools of performance modeling and performance engineering have gained further importance in order to improve the performance and scalability of these systems. Since the seminal work of A. K. Erlang almost a century ago on the mod- ing of telephone traf c, performance modeling and measurement have grown into a discipline and have been evolving both in their methodologies and in the areas in which they are applied. It is noteworthy that various mathematical techniques were brought into this eld, including in particular probability theory, stochastic processes, statistics, complex analysis, stochastic calculus, stochastic comparison, optimization, control theory, machine learning and information theory. The app- cation areas extended from telephone networks to Internet and Web applications, from computer systems to computer software, from manufacturing systems to s- ply chain, from call centers to workforce management.


Wireless Network Design

Wireless Network Design

Author: Jeff Kennington

Publisher: Springer Science & Business Media

Published: 2010-11-10

Total Pages: 384

ISBN-13: 1441961119

DOWNLOAD EBOOK

This book surveys state-of-the-art optimization modeling for design, analysis, and management of wireless networks, such as cellular and wireless local area networks (LANs), and the services they deliver. The past two decades have seen a tremendous growth in the deployment and use of wireless networks. The current-generation wireless systems can provide mobile users with high-speed data services at rates substantially higher than those of the previous generation. As a result, the demand for mobile information services with high reliability, fast response times, and ubiquitous connectivity continues to increase rapidly. The optimization of system performance has become critically important both in terms of practical utility and commercial viability, and presents a rich area for research. In the editors' previous work on traditional wired networks, we have observed that designing low cost, survivable telecommunication networks involves extremely complicated processes. Commercial products available to help with this task typically have been based on simulation and/or proprietary heuristics. As demonstrated in this book, however, mathematical programming deserves a prominent place in the designer's toolkit. Convenient modeling languages and powerful optimization solvers have greatly facilitated the implementation of mathematical programming theory into the practice of commercial network design. These points are equally relevant and applicable in today’s world of wireless network technology and design. But there are new issues as well: many wireless network design decisions, such as routing and facility/element location, must be dealt with in innovative ways that are unique and distinct from wired (fiber optic) networks. The book specifically treats the recent research and the use of modeling languages and network optimization techniques that are playing particularly important and distinctive roles in the wireless domain.


Computational Network Application Tools for Performance Management

Computational Network Application Tools for Performance Management

Author: Millie Pant

Publisher: Springer Nature

Published: 2019-10-18

Total Pages: 267

ISBN-13: 9813295856

DOWNLOAD EBOOK

This book explores a range of important theoretical and practical issues in the field of computational network application tools, while also presenting the latest advances and innovations using intelligent technology approaches. The main focus is on detecting and diagnosing complex application performance problems so that an optimal and expected level of system service can be attained and maintained. The book discusses challenging issues like enhancing system efficiency, performance, and assurance management, and blends the concept of system modeling and optimization techniques with soft computing, neural network, and sensor network approaches. In addition, it presents certain metrics and measurements that can be translated into business value. These metrics and measurements can also help to establish an empirical performance baseline for various applications, which can be used to identify changes in system performance. By presenting various intelligent technologies, the book provides readers with compact but insightful information on several broad and rapidly growing areas in the computation network application domain. The book’s twenty-two chapters examine and address current and future research topics in areas like neural networks, soft computing, nature-inspired computing, fuzzy logic and evolutionary computation, machine learning, smart security, and wireless networking, and cover a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book was written to serve a broad readership, including engineers, computer scientists, management professionals, and mathematicians interested in studying tools and techniques for computational intelligence and applications for performance analysis. Featuring theoretical concepts and best practices in computational network applications, it will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of soft computing, neural networks, machine learning, sensor networks, smart security, etc.


Modeling and Simulation of Computer Networks and Systems

Modeling and Simulation of Computer Networks and Systems

Author: Faouzi Zarai

Publisher: Morgan Kaufmann

Published: 2015-04-21

Total Pages: 965

ISBN-13: 0128011580

DOWNLOAD EBOOK

Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications introduces you to a broad array of modeling and simulation issues related to computer networks and systems. It focuses on the theories, tools, applications and uses of modeling and simulation in order to effectively optimize networks. It describes methodologies for modeling and simulation of new generations of wireless and mobiles networks and cloud and grid computing systems. Drawing upon years of practical experience and using numerous examples and illustrative applications recognized experts in both academia and industry, discuss: Important and emerging topics in computer networks and systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks Methodologies, strategies and tools, and strategies needed to build computer networks and systems modeling and simulation from the bottom up Different network performance metrics including, mobility, congestion, quality of service, security and more... Modeling and Simulation of Computer Networks and Systems is a must have resource for network architects, engineers and researchers who want to gain insight into optimizing network performance through the use of modeling and simulation. Discusses important and emerging topics in computer networks and Systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks Provides the necessary methodologies, strategies and tools needed to build computer networks and systems modeling and simulation from the bottom up Includes comprehensive review and evaluation of simulation tools and methodologies and different network performance metrics including mobility, congestion, quality of service, security and more