This proceedings volume contains selected talks and poster presentations from the 9th International Conference on Path Integrals — New Trends and Perspectives, which took place at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, during the period September 23-28, 2007. Continuing the well-developed tradition of the conference series, the present status of both the different techniques of path integral calculations and their diverse applications to many fields of physics and chemistry is reviewed. This is reflected in the main topics in this volume, which range from more traditional fields such as general quantum physics and quantum or statistical field theory through technical aspects like Monte Carlo simulations to more modern applications in the realm of quantum gravity and astrophysics, condensed matter physics with topical subjects such as Bose-Einstein condensation or quantum wires, biophysics and econophysics. All articles are successfully tied together by the common method of path integration; as a result, special methodological advancements in one topic could be transferred to other topics.
This contributed volume features chapters based on talks given at the second international conference titled Aspects of Time-Frequency Analysis (ATFA 19), held at Politecnico di Torino from June 25th to June 27th, 2019. Written by experts in harmonic analysis and its applications, these chapters provide a valuable overview of the state-of-the-art of this active area of research. New results are collected as well, making this a valuable resource for readers seeking to be brought up-to-date. Topics covered include: Signal analysis Quantum theory Modulation space theory Applications to the medical industry Wavelet transform theory Anti-Wick operators Landscapes of Time-Frequency Analysis: ATFA 2019 will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis.
This is the second updated and extended edition of the successful book on Feynman-Kac theory. It offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. The first volume concentrates on Feynman-Kac-type formulae and Gibbs measures.
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity and strings, to the more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG12 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting includes 29 plenary talks stretched over 6 mornings, and 74 parallel sessions over 5 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theories, to precision tests of general relativity including progress towards the detection of gravitational waves, to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy, in active galactic nuclei and in other galaxies, neutron stars, pulsar astrophysics, gravitational lensing effects, neutrino physics and ultra high energy cosmic rays. The rest of the volumes include parallel sessions on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, cosmic background radiation & observational cosmology, numerical relativity & algebraic computing, gravitational lensing, variable ';constants'; of nature, large scale structure, topology of the universe, brane-world cosmology, early universe models & cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, gamma ray burst modeling, supernovas, global structure, singularities, cosmic censorship, chaos, Einstein-Maxwell systems, inertial forces, gravitomagnetism, wormholes & time machines, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors & data analysis, precision gravitational measurements, history of relativity, quantum gravity & loop quantum gravity, Casimir effect, quantum cosmology, strings & branes, self-gravitating systems, gamma ray astronomy, cosmic rays, gamma ray bursts and quasars.
This volume provides the latest developments in the field of fractional dynamics, which covers fractional (anomalous) transport phenomena, fractional statistical mechanics, fractional quantum mechanics and fractional quantum field theory. The contributors are selected based on their active and important contributions to their respective topics. This volume is the first of its kind that covers such a comprehensive range of topics in fractional dynamics. It will point out to advanced undergraduate and graduate students, and young researchers the possible directions of research in this subject. In addition to those who intend to work in this field and those already in the field, this volume will also be useful for researchers not directly involved in the field, but want to know the current status and trends of development in this subject. This latter group includes theoretical chemists, mathematical biologists and engineers.
The Marcel Grossmann Meetings seek to further the development of the foundations and applications of Einstein's general relativity by promoting theoretical understanding in the relevant fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. The meetings discuss recent developments in classical and quantum aspects of gravity, and in cosmology and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, having the main objective of gathering scientists from diverse backgrounds for deepening our understanding of spacetime structure and reviewing the current state of the art in the theory, observations and experiments pertinent to relativistic gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity, branes and strings, to more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG13 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 33 morning plenary talks during 6 days, and 75 parallel sessions over 4 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string/brane theories, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star and pulsar astrophysics. Volumes B and C include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, quasors, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, and cosmic rays and the history of general relativity.
This proceedings volume contains selected talks and poster presentations from the 9th International Conference on Path Integrals ? New Trends and Perspectives, which took place at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, during the period September 23?28, 2007. Continuing the well-developed tradition of the conference series, the present status of both the different techniques of path integral calculations and their diverse applications to many fields of physics and chemistry is reviewed. This is reflected in the main topics in this volume, which range from more traditional fields such as general quantum physics and quantum or statistical field theory through technical aspects like Monte Carlo simulations to more modern applications in the realm of quantum gravity and astrophysics, condensed matter physics with topical subjects such as Bose?Einstein condensation or quantum wires, biophysics and econophysics. All articles are successfully tied together by the common method of path integration; as a result, special methodological advancements in one topic could be transferred to other topics.
The escape from metastable states via noise-assisted hopping and/or tunneling is pivotal to many scientific disciplines. It impacts on such diverse physical, chemical and biological processes as diffusion in solids, chemical reactions, nucleation phenomena and transfer of matter and information in biological systems. This volume surveys recent developments in the rate theory of both equilibrium and nonequilibrium processes. The understanding of the classical and quantum-mechanical concepts of this theory is deepened and extended in order to cope with various problems which, in particular, arise in complex systems. A wide range of applications are discussed such as correlated hops in periodic potentials, fluctuating barriers, transitions to limit cycles, discrete time dynamics, random walks on selfsimilar structures, and nonexponential decay in disordered systems is covered and profoundly discussed. For research workers and graduate students in chemistry, physics and biology with an interest in reaction rate theory.
Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.