Grid Converters for Photovoltaic and Wind Power Systems

Grid Converters for Photovoltaic and Wind Power Systems

Author: Remus Teodorescu

Publisher: John Wiley & Sons

Published: 2011-07-28

Total Pages: 358

ISBN-13: 1119957206

DOWNLOAD EBOOK

Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Subspace Identification for Linear Systems

Subspace Identification for Linear Systems

Author: Peter van Overschee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1461304652

DOWNLOAD EBOOK

Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.


DC-DC Converter Topologies

DC-DC Converter Topologies

Author: Gerry Moschopoulos

Publisher: John Wiley & Sons

Published: 2024-01-31

Total Pages: 468

ISBN-13: 111961242X

DOWNLOAD EBOOK

A comprehensive look at DC-DC converters and advanced power converter topologies for all skills levels As it can be rare for source voltage to meet the requirements of a Direct Current (DC) load, DC-DC converters are essential to access service. DC-DC power converters employ power semiconductor devices (like MOSFETs and IGBTs) as switches and passive elements such as capacitors, inductors, and transformers to alter the voltage provided by a DC source into the necessary DC voltage as is required by a DC load. This source can be a battery, solar panels, fuel cells, or a DC bus voltage fed by rectified AC utility voltage. As the many components of DC-DC converters can be differently arranged into circuit structures called topologies, there are as many possible circuit topologies as there are possible combinations of circuit elements. Focusing on DC-DC switch-mode power converters ranging from 50 W to 10kW, DC-DC Converter Topologies provides a survey of all converter topology types within this power range. General principles are described for each topology type using a representative converter as an example. Variations that can be found that differ from the example are then examined, with a helpful discussion of comparisons when relevant. A broad range of topics is covered within the book, from simple, low-power converters to complex, high-power converters and everywhere in between. DC-DC Converter Topologies readers will also find: A detailed discussion of four key DC-DC converter topologies Description of isolated two-switch pulse-width modulated (PWM) topologies including push-pull, half-bridge, and interleaved converters An exploration of high-gain converters such as coupled inductors, voltage multipliers, and switched capacitor converters This book provides the tools so that a non-expert will be equipped to deal with the vast array of DC-DC converters that presently exist. As such, DC-DC Converter Topologies is a useful reference for electrical engineers, professors, and graduate students studying in the field.


Control and Nonlinear Dynamics on Energy Conversion Systems

Control and Nonlinear Dynamics on Energy Conversion Systems

Author: Herbert Ho-Ching Iu

Publisher: MDPI

Published: 2019-07-01

Total Pages: 435

ISBN-13: 3039211102

DOWNLOAD EBOOK

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.


Nonlinear Control of Engineering Systems

Nonlinear Control of Engineering Systems

Author: Warren E. Dixon

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 410

ISBN-13: 1461200318

DOWNLOAD EBOOK

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.


Ocean Wave Energy Conversion

Ocean Wave Energy Conversion

Author: Aurelien Babarit

Publisher: Elsevier

Published: 2017-11-17

Total Pages: 264

ISBN-13: 0081023901

DOWNLOAD EBOOK

The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy


Numerical Modelling of Wave Energy Converters

Numerical Modelling of Wave Energy Converters

Author: Matt Folley

Publisher: Academic Press

Published: 2016-06-14

Total Pages: 308

ISBN-13: 0128032111

DOWNLOAD EBOOK

Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation


Nonlinear Model Reduction by Moment Matching

Nonlinear Model Reduction by Moment Matching

Author: Giordano Scarciotti

Publisher:

Published: 2017

Total Pages: 185

ISBN-13: 9781680833317

DOWNLOAD EBOOK

Mathematical models are at the core of modern science and technology. An accurate description of behaviors, systems and processes often requires the use of complex models which are difficult to analyze and control. To facilitate analysis of and design for complex systems, model reduction theory and tools allow determining "simpler" models which preserve some of the features of the underlying complex description. A large variety of techniques, which can be distinguished depending on the features which are preserved in the reduction process, has been proposed to achieve this goal. One such a method is the moment matching approach. This monograph focuses on the problem of model reduction by moment matching for nonlinear systems. The central idea of the method is the preservation, for a prescribed class of inputs and under some technical assumptions, of the steady-state output response of the system to be reduced. We present the moment matching approach from this vantage point, covering the problems of model reduction for nonlinear systems, nonlinear time-delay systems, data-driven model reduction for nonlinear systems and model reduction for "discontinuous" input signals. Throughout the monograph linear systems, with their simple structure and strong properties, are used as a paradigm to facilitate understanding of the theory and provide foundation of the terminology and notation. The text is enriched by several numerical examples, physically motivated examples and with connections to well-established notions and tools, such as the phasor transform.