This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.
Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that
Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.
The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.
PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS BY H. BAT EM AN, M. A., PH. D. Late Fellow of Trinity College, Cambridge Professor of Mathematics, Theoretical Physics and Aeronautics, California Institute of Technology, Pasadena, California NEW YORK DOVER PUBLICATIONS 1944 First Edition 1932 First American Edition 1944 By special arrangement with the Cambridge University Press and The Macmillan Co. Printed in the U. S. A. Dedicated to MY MOTHER CONTENTS PREFACE page xiii INTRODUCTION xv-xxii CHAPTER I THE CLASSICAL EQUATIONS 1-11-1-14. Uniform motion, boundary conditions, problems, a passage to the limit. 1-7 1-15-1-19. Fouriers theorem, Fourier constants, Cesaros method of summation, Parsevals theorem, Fourier series, the expansion of the integral of a bounded function which is continuous bit by bit. . 7-16 1-21-1-25. The bending of a beam, the Greens function, the equation of three moments, stability of a strut, end conditions, examples. 16-25 1 31-1-36. F ee undamped vibrations, simple periodic motion, simultaneous linear equations, the Lagrangian equations of motion, normal vibrations, com pound pendulum, quadratic forms, Hermit ian forms, examples. 25-40 1-41-1 - 42. Forced oscillations, residual oscillation, examples. 40-44 1-43. Motion with a resistance proportional to the velocity, reduction to alge braic equations. 44 d7 1-44. The equation of damped vibrations, instrumental records. 47-52 1-45-1 - 46. The dissipation function, reciprocal relations. 52-54 1-47-1-49. Fundamental equations of electric circuit theory, Cauchys method of solving a linear equation, Heavisides expansion. 54-6Q 1-51 1-56. The simple wave-equation, wave propagation, associated equations, transmission of vibrations, vibration of a building, vibration of a string, torsional oscillations of a rod, plane waves of sound, waves in a canal, examples. 60-73 1-61-1 - 63. Conjugate functions and systems of partial differential equations, the telegraphic equation, partial difference equations, simultaneous equations involving high derivatives, examplu. 73-77 1-71-1-72. Potentials and stream-functions, motion of a fluid, sources and vortices, two-dimensional stresses, geometrical properties of equipotentials and lines of force, method of inversion, examples. 77-90 1-81-1-82. The classical partial differential equations for Euclidean space, Laplaces equation, systems of partial differential equations of the first order fchich lead to the classical equations, elastic equilibrium, equations leading to the uations of wave-motion, 90-95 S 1 91. Primary solutions, Jacobis theorem, examples. 95-100 1 92. The partial differential equation of the characteristics, bicharacteristics and rays. 101-105 1 93-1 94. Primary solutions of the second grade, primitive solutions of the wave-equation, primitive solutions of Laplaces equation. 105-111 1-95. Fundamental solutions, examples. 111-114 viii Contents CHAPTER n APPLICATIONS OF THE INTEGRAL THEOREMS OF GREEN AND STOKES 2 11-2-12. Greens theorem, Stokes s theorem, curl of a vector, velocity potentials, equation of continuity. pages 116-118 2-13-2-16. The equation of the conduction of heat, diffusion, the drying of wood, the heating of a porous body by a warm fluid, Laplaces method, example. 118-125 2-21-2 22. Riemanns method, modified equation of diffusion, Greens func tions, examples. 126-131 f 2-23-2 26. Green s theorem for a general lineardifferential equation of the second order, characteristics, classification of partial differential equations of the second order, a property of equations of elliptic type, maxima and minima of solutions. 131-138 2-31-2-32. Greens theorem for Laplaces equation, Greens functions, reciprocal relations. 138-144 2-33-2-34. Partial difference equations, associated quadratic form, the limiting process, inequalities, properties of the limit function. 144-152 2-41-2-42...