Describing the main procedures for the parallelization of the finite element method for distributed memory architectures, this book is for engineers, computer scientists and mathematicians working on the application of high performance computing to finite element methods. Its procedures are applicable to distributed memory computer architectures.
Introduces mechanical engineers to high-performance computing using the new generation of computers with vector and parallel processing capabilities that allow the solution to problems beyond the ken of traditional computers. The chapters present an introduction and overview, explain several methodo
This book constitutes the refereed proceedings of the 4th International Conference on Parallel Computation, ACPC'99, held in Salzburg, Austria in February 1999; the conference included special tracks on parallel numerics and on parallel computing in image processing, video processing, and multimedia. The volume presents 50 revised full papers selected from a total of 75 submissions. Also included are four invited papers and 15 posters. The papers are organized in topical sections on linear algebra, differential equations and interpolation, (Quasi-)Monte Carlo methods, numerical software, numerical applications, image segmentation and image understanding, motion estimation and block matching, video processing, wavelet techniques, satellite image processing, data structures, data partitioning, resource allocation and performance analysis, cluster computing, and simulation and applications.
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.
This volume contains the papers presented at the Parallel Computing Fluid Dynamics '93 Conference, Paris, 1993. A wide range of topics are covered including: networked computers, data parallel programming, domain decomposition, Euler and Navier-Stokes solvers.Researchers in this area will find this volume a useful reference in this rapidly developing field.
This book presents advances in high performance computing as well as advances accomplished using high performance computing. It contains a collection of papers presenting results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering. From science problems to mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers, the book presents state-of-the-art methods and technology, and exemplary results in these fields.
Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.