Understanding Earth's Deep Past

Understanding Earth's Deep Past

Author: National Research Council

Publisher: National Academies Press

Published: 2011-08-02

Total Pages: 153

ISBN-13: 0309209196

DOWNLOAD EBOOK

There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.


Deep Carbon

Deep Carbon

Author: Beth N. Orcutt

Publisher: Cambridge University Press

Published: 2019-10-17

Total Pages: 687

ISBN-13: 1108477496

DOWNLOAD EBOOK

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.


Understanding Earth's Deep Past

Understanding Earth's Deep Past

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-02

Total Pages: 153

ISBN-13: 0309209153

DOWNLOAD EBOOK

There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.


Polar Environments and Global Change

Polar Environments and Global Change

Author: Roger G. Barry

Publisher: Cambridge University Press

Published: 2018-08-09

Total Pages: 445

ISBN-13: 1108423167

DOWNLOAD EBOOK

Surveys atmospheric, oceanic and cryospheric processes, present and past conditions, and changes in polar environments.


Production and Preservation of Organic and Fire-derived Carbon Across the Paleocene-Eocene Thermal Maximum

Production and Preservation of Organic and Fire-derived Carbon Across the Paleocene-Eocene Thermal Maximum

Author: Elizabeth Denis

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The storage and release of organic carbon from the biosphere are influenced by temperature and precipitation through changes in plant productivity and in oxidative loss, such as fire and microbial respiration. The long-term fate of soil organic carbon during global warming is important because soil carbon is the largest terrestrial organic carbon reservoir and soil can serve as a sink or a source for atmospheric CO2. Soil carbon degradation is multifaceted as different pools of organic carbon in soils (e.g., fresh biomass, refractory soil organic matter, and thermally mature fossil organic matter) have different reactivity. Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. Because there are several variables and mechanisms are complex, it is difficult to predict future and infer past changes in both soil degradation and fire activity based on climate and environmental conditions. Examining changes in soil organic carbon, climate, and fire during past warming events, such as the Paleocene-Eocene Thermal Maximum (PETM), should help elucidate climate-carbon cycle relationships, especially effects that are expressed over long durations (e.g., 100 10,000 years).Abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, likely, terrestrial organic carbon production and preservation. The PETM coincided with a negative carbon isotope excursion (CIE), signifying a large release of 13C-depleted carbon to the biosphere and a major perturbation to the carbon cycle. Bulk organic carbon isotopes (13Corg) are often used to identify the CIE, but in terrestrial sections the 13Corg CIE can be highly variable and distorted. It has been suggested that 13Corg values were highly variable because of soil carbon degradation by microbes and allochthonous (pre-PETM) fossil carbon inputs. Constraining the degree and extent of degradation is critical in identifying the 13C-depleted carbon source and understanding carbon cycling processes and possible underlying organic carbon destabilization mechanisms during the PETM. At three Paleocene-Eocene fluvial sites in the western USA, my co-authors and I test the hypothesis that there were increased degradation (soil carbon loss) and refractory (allochthonous) carbon inputs during the PETM. Clay minerals stabilize organic carbon, but we hypothesize decreased clay content and changes in mineralogy destabilized organic carbon during the PETM. If soil moisture was a control on soil organic carbon degradation, then sites with similar soil moistirue conditions would have a similar loss of organic carbon. Using polycyclic aromatic hydrocarbons (PAHs), combustion byproducts that are relatively resistant to degradation, as a proxy for intermediate refractory carbon helped to discern the relative preservation of different carbon pools in the soils. I developed a novel molecular metric of degradation by calculating the percent loss of PAHs relative to total organic carbon (TOC) to estimate the extent of organic carbon loss and proportion of refractory allochthonous carbon during the PETM. All forms of soil carbon decreased during the PETM, and PAH concentrations decreased even more than TOC, which suggests a more refractory phase was present, such as allochthonous fossil carbon. Positive correlations between elemental oxide weight percents (e.g., Al2O3 and TiO2) and TOC suggests organic carbon preservation was associated with clay minerals. Wetter sites had a greater percent loss of organic carbon during the PETM than drier sites. Reduced soil organic matter preservation during the PETM was due to a combination of increased temperatures (which increased microbial decomposition rates), decreased clay content and changes in mineralogy (which inhibited stability of fresh carbon), and fluctuations in soil moisture (which destabilized older, refractory carbon). Soil carbon degradation, even of intermediately refractory carbon, was not just a local phenomenon and was regional, and potentially global, in scope.In the marine sediments of the Arctic, where organic carbon was well-preserved during the PETM, we used PAHs as an indicator for fire and plant biomarkers, as well as published pollen data, to decipher the dynamics between fire, precipitation, and vegetation changes in the paleoecosystem. In modern ecosystems, climate influences fuel availability (e.g., vegetation), fuel flammability (e.g., precipitation and temperature), and ignitions (i.e., lightning). In the paleorecord, authors often invoke drier conditions as a cause of increased fire occurrence. During the PETM, Arctic sediments exhibit higher PAH concentrations, and they both increased relative to plant input and tracked the increase in angiosperms (inferred from plant biomarker ratios and pollen). Our results suggest wetter conditions, followed by increased temperature, favored angiosperms and enhanced fire occurrence. Like modern fire dynamics, shifts in past fire patterns reflect a balance of variability in precipitation and sufficiently flammable vegetation. Increased fire in a wetter Arctic suggests PETM precipitation was seasonal, or variable on a longer timescale, and that hotter temperatures and angiosperm-dominated forests further facilitated burning.Overall, we used PAHs as a primary signal of production (i.e., fire occurrence) in marine sediments and as a secondary signal of preservation (e.g., organic carbon degradation) in ancient soils. Our results highlight that terrestrial organic carbon was better preserved in the marine section than the fluvial sections. Increased temperatures, decreased clay content, changes in mineralogy, and variations in soil moisture destabilized carbon on millennial timescales and, with sustained higher temperatures across the PETM (~150 thousand years), increased soil carbon degradation persisted for tens of thousands of years. As temperatures warmed and remained warmer than the Paleocene, soils served as a sustained source of CO2 to the atmosphere rather than a sink. Although CO2 released from microbial respiration enhanced the greenhouse warming, increased organic carbon preservation in the marine realm may have counteracted the increased carbon output from soils.