Topics in Modal Analysis & Parameter Identification, Volume 8

Topics in Modal Analysis & Parameter Identification, Volume 8

Author: Brandon J. Dilworth

Publisher: Springer Nature

Published: 2022-08-03

Total Pages: 181

ISBN-13: 3031054458

DOWNLOAD EBOOK

Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the eighth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on: Operational Modal & Modal Analysis Applications Experimental Techniques Modal Analysis, Measurements & Parameter Estimation Modal Vectors & Modeling Basics of Modal Analysis Additive Manufacturing & Modal Testing of Printed Parts


Modal Analysis of Nonlinear Mechanical Systems

Modal Analysis of Nonlinear Mechanical Systems

Author: Gaetan Kerschen

Publisher: Springer

Published: 2014-10-13

Total Pages: 346

ISBN-13: 3709117917

DOWNLOAD EBOOK

The book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification.


Modal Analysis

Modal Analysis

Author: Zhi-Fang Fu

Publisher: Elsevier

Published: 2001-09-04

Total Pages: 305

ISBN-13: 0080511783

DOWNLOAD EBOOK

Modal Analysis provides a detailed overview of the theory of analytical and experimental modal analysis and its applications. Modal Analysis is the processes of determining the inherent dynamic characteristics of any system and using them to formulate a mathematical model of the dynamic behavior of the system. In the past two decades it has become a major technological tool in the quest for determining, improving and optimizing dynamic characteristics of engineering structures. Its main application is in mechanical and aeronautical engineering, but it is also gaining widespread use in civil and structural engineering, biomechanical problems, space structures, acoustic instruments and nuclear engineering. - The only book to focus on the theory of modal analysis before discussing applications - A relatively new technique being utilized more and more in recent years which is now filtering through to undergraduate courses - Leading expert in the field


Handbook of Experimental Structural Dynamics

Handbook of Experimental Structural Dynamics

Author: Randall Allemang

Publisher: Springer

Published: 2022-08-06

Total Pages: 1403

ISBN-13: 9781461445463

DOWNLOAD EBOOK

The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods * · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods * · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures* · Uncertainty Quantification: UQ, QMU and Statistics * · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) * · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) * · Automotive Structural Testing * · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing * · Applied Math for Experimental Structural Mechanics * Chapter Forthcoming Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.


Active Subspaces

Active Subspaces

Author: Paul G. Constantine

Publisher: SIAM

Published: 2015-03-17

Total Pages: 105

ISBN-13: 1611973864

DOWNLOAD EBOOK

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.


Dynamic Mode Decomposition

Dynamic Mode Decomposition

Author: J. Nathan Kutz

Publisher: SIAM

Published: 2016-11-23

Total Pages: 241

ISBN-13: 1611974496

DOWNLOAD EBOOK

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.


Dimension Reduction of Large-Scale Systems

Dimension Reduction of Large-Scale Systems

Author: Peter Benner

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 397

ISBN-13: 3540279091

DOWNLOAD EBOOK

In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.