Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies—what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth’s atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth’s atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary_atmospheres/
Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.
Earth as an Evolving Planetary System, Second Edition, explores key topics and questions relating to the evolution of the Earth's crust and mantle over the last four billion years. This updated edition features exciting new information on Earth and planetary evolution and examines how all subsystems in our planet—crust, mantle, core, atmosphere, oceans and life—have worked together and changed over time. It synthesizes data from the fields of oceanography, geophysics, planetology, and geochemistry to address Earth's evolution. This volume consists of 10 chapters, including two new ones that deal with the Supercontinent Cycle and on Great Events in Earth history. There are also new and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes. In addition, the book now includes new tomographic data tracking plume tails into the deep mantle. This book is intended for advanced undergraduate and graduate students in Earth, Atmospheric, and Planetary Sciences, with a basic knowledge of geology, biology, chemistry, and physics. It also may serve as a reference tool for structural geologists and professionals in related disciplines who want to look at the Earth in a broader perspective. - Kent Condie's corresponding interactive CD, Plate Tectonics and How the Earth Works, can be purchased from Tasa Graphic Arts here: http://www.tasagraphicarts.com/progptearth.html - Two new chapters on the Supercontinent Cycle and on Great Events in Earth history - New and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes - Also new in this Second Edition: the lower mantle and the role of the post-perovskite transition, the role of water in the mantle, new tomographic data tracking plume tails into the deep mantle, Euxinia in Proterozoic oceans, The Hadean, A crustal age gap at 2.4-2.2 Ga, and continental growth
The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.
This fully-updated second edition remains the only truly detailed exploration of the origins of our Solar System, written by an authority in the field. Unlike other authors, Michael Woolfson focuses on the formation of the solar system, engaging the reader in an intelligent yet accessible discussion of the development of ideas about how the Solar System formed from ancient times to the present.Within the last five decades new observations and new theoretical advances have transformed the way scientists think about the problem of finding a plausible theory. Spacecraft and landers have explored the planets of the Solar System, observations have been made of Solar-System bodies outside the region of the planets and planets have been detected and observed around many solar-type stars. This new edition brings in the most recent discoveries, including the establishment of dwarf planets and challenges to the ‘standard model’ of planet formation — the Solar Nebula Theory.While presenting the most up-to-date material and the underlying science of the theories described, the book avoids technical jargon and terminology. It thus remains a digestible read for the non-expert interested reader, whilst being detailed and comprehensive enough to be used as an undergraduate physics and astronomy textbook, where the formation of the solar system is a key part of the course.Michael Woolfson is Emeritus Professor of Theoretical Physics at University of York and is an award-winning crystallographer and astronomer.