The only book series to summarize the latest progress on organic reaction mechanisms, Organic Reaction Mechanisms, 1982 surveys the development in understanding of the main classes of organic reaction mechanisms reported in the primary scientific literature in 1982. The 18th annual volume in this highly successful series highlights mechanisms of stereo-specific reactions. Reviews are compiled by a team of experienced editors and authors, allowing advanced undergraduates, graduate students, postdocs, and chemists to rely on the volume's continuing quality of selection and presentation.
The only book series to summarize the latest progress on organic reaction mechanisms, Organic Reaction Mechanisms, 1983 surveys the development in understanding of the main classes of organic reaction mechanisms reported in the primary scientific literature in 1983. The 19th annual volume in this highly successful series highlights mechanisms of stereo-specific reactions. Reviews are compiled by a team of experienced editors and authors, allowing advanced undergraduates, graduate students, postdocs, and chemists to rely on the volume's continuing quality of selection and presentation.
Reaction Mechanisms in Environmental Organic Chemistry classifies and organizes the reactions of environmentally important organic compounds using concepts and data drawn from traditional mechanistic and physical organic chemistry. It will help readers understand these reactions and their importance for the environmental fates or organic compounds of many types. The book has a molecular and mechanistic emphasis, and it is organized by reaction type. Organic molecules and their fates are examined in an ecosystem context. Their reactions are discussed in terms that organic chemists would use. The book will benefit organic chemists, environmental engineers, water treatment professionals, hazardous waste specialists, and biologists. Although conceived as a comprehensive monograph, the book could also be used as a text or reference for environmental chemistry classes at the undergraduate or graduate level.
The only book series to summarize the latest progress on organic reaction mechanisms, Organic Reaction Mechanisms, 1986 surveys the development in understanding of the main classes of organic reaction mechanisms reported in the primary scientific literature in 1986. The 22nd annual volume in this highly successful series highlights mechanisms of stereo-specific reactions. Reviews are compiled by a team of experienced editors and authors, allowing advanced undergraduates, graduate students, postdocs, and chemists to rely on the volume's continuing quality of selection and presentation.
This book, written explicitly for graduate and postgraduate students of chemistry, provides an extensive coverage of various organic reaction and rearrangements with emphasis on there application in synthesis. A summary of oxidation and reduction of organic compounds is given in tabular form (correlation tables) for the convenience of students. The most commonly encountered reaction intermediates are dealt with. Applications of organic reagents illustrated with examples and problems at the end of each chapter will enable students to evaluate their understanding of the topic.
The only book series to summarize the latest progress on organic reaction mechanisms, Organic Reaction Mechanisms, 1984 surveys the development in understanding of the main classes of organic reaction mechanisms reported in the primary scientific literature in 1984. The 20th annual volume in this highly successful series highlights mechanisms of stereo-specific reactions. Reviews are compiled by a team of experienced editors and authors, allowing advanced undergraduates, graduate students, postdocs, and chemists to rely on the volume's continuing quality of selection and presentation.
This fully updated new edition presents organic reaction mechanism questions, carefully selected from the primary chemical literature, to understand how reactants are transformed into products. The author explains step-by-step solutions to all problems with appropriate contextual comments explaining the rationale and reasoning underlying each step, and identifying the underlying principles involved in each question. In the process the reader gains a better understanding of the fundamental principles of organic chemistry and how to become proficient in using the Lewis acid/Lewis base concept to complete organic reactions without resorting to memorization. Features : The questions are graded in difficulty with Part A containing questions aimed at students taking the sophomore-level organic chemistry class, while part B contains questions of somewhat greater difficulty suitable for students taking an honors course in organic chemistry or a beginning graduate course. Detailed answers are provided to all questions so students can check their answers and important points are highlighted in each answer. Special emphasis has been placed on the selection of questions to ensure that each question illustrates one or more fundamental principles of organic chemistry. Interspersed throughout the book are minireviews that cover the material pertaining to a particular topic. The specific literature references corresponding to each question are included and students can look up those references for more contextual information. Includes a large number of carefully-selected mechanism questions and step-by-step solutions, including explanatory comments
The book provides insight into the working of clays and clay minerals in speeding up a variety of organic reactions. Clay minerals are known to have a large propensity for taking up organic molecules and can catalyse numerous organic reactions due to fine particle size, extensive surface area, layer structure, and peculiar charge characteristics. They can be used as heterogeneous catalysts and catalyst carriers of organic reactions because they are non-corrosive, easy to separate from the reaction mixture, and reusable. Clays and clay minerals have an advantage over other solid acids as they are abundant, inexpensive, and non-polluting.
The completely revised and updated, definitive resource for students and professionals in organic chemistry The revised and updated 8th edition of March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure explains the theories of organic chemistry with examples and reactions. This book is the most comprehensive resource about organic chemistry available. Readers are guided on the planning and execution of multi-step synthetic reactions, with detailed descriptions of all the reactions The opening chapters of March's Advanced Organic Chemistry, 8th Edition deal with the structure of organic compounds and discuss important organic chemistry bonds, fundamental principles of conformation, and stereochemistry of organic molecules, and reactive intermediates in organic chemistry. Further coverage concerns general principles of mechanism in organic chemistry, including acids and bases, photochemistry, sonochemistry and microwave irradiation. The relationship between structure and reactivity is also covered. The final chapters cover the nature and scope of organic reactions and their mechanisms. This edition: Provides revised examples and citations that reflect advances in areas of organic chemistry published between 2011 and 2017 Includes appendices on the literature of organic chemistry and the classification of reactions according to the compounds prepared Instructs the reader on preparing and conducting multi-step synthetic reactions, and provides complete descriptions of each reaction The 8th edition of March's Advanced Organic Chemistry proves once again that it is a must-have desktop reference and textbook for every student and professional working in organic chemistry or related fields. Winner of the Textbook & Acadmic Authors Association 2021 McGuffey Longevity Award.
In additionto covering thoroughly the core areas of physical organic chemistry -structure and mechanism - this book will escortthe practitioner of organic chemistry into a field that has been thoroughlyupdated.