Photoresponsive Polymers I

Photoresponsive Polymers I

Author: Seth Marder

Publisher: Springer Science & Business Media

Published: 2008-08-27

Total Pages: 220

ISBN-13: 354069448X

DOWNLOAD EBOOK

With contributions by numerous experts


Polymeric Biomaterials

Polymeric Biomaterials

Author: Severian Dumitriu

Publisher: CRC Press

Published: 2013-01-17

Total Pages: 922

ISBN-13: 1420094718

DOWNLOAD EBOOK

Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona


Polyfluorenes

Polyfluorenes

Author: Ullrich Scherf

Publisher: Springer

Published: 2008-07-11

Total Pages: 331

ISBN-13: 3540687343

DOWNLOAD EBOOK

see table of contents


Polymer-Engineered Nanostructures for Advanced Energy Applications

Polymer-Engineered Nanostructures for Advanced Energy Applications

Author: Zhiqun Lin

Publisher: Springer

Published: 2017-06-16

Total Pages: 717

ISBN-13: 331957003X

DOWNLOAD EBOOK

This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.


Biofabrication for Orthopedics

Biofabrication for Orthopedics

Author: Wenguo Cui

Publisher: John Wiley & Sons

Published: 2022-10-03

Total Pages: 792

ISBN-13: 3527831355

DOWNLOAD EBOOK

Biofabrication for Orthopedics A comprehensive overview of biofabrication techniques for orthopedics and their novel applications With an ever-increasing global population and the rise in the occurrence of orthopedic diseases amongst an aging population, it is essential for technological advances to meet this growing medical need. Orthopedic biofabrication is a cutting-edge field that seeks to produce novel clinical solutions to this mounting problem, through the incorporation of revolutionary technologies that have the potential to not only transform healthcare, but also provide highly automated and personalized patient solutions. With the advances in the discipline, there is a significant growing interest in biofabrication for orthopedics in research activity geared towards routine clinical use. Ideal for a broad readership amongst medical practitioners and scientists, Biofabrication for Orthopedics summarizes all aspects of the topic: detailed information on the technology, along with advanced developments, research progress, and future perspectives on biofabrication for orthopaedics—particularly on the potential applications for tissue engineering technologies. In doing so, the book describes the various biomaterials—natural and synthetic—use for orthopedics and discusses the many ways in which these materials can be used in all parts of the body. As such, it offers detailed information on a wide range of applications in the fields of biology and clinical and industrial manufacturing. Biofabrication for Orthopedics readers will also find: Insights into the applications of biofabrication technologies in various bodily functions Thorough discussion of different biofabrication techniques used in creating orthopedic products, like stereolithography, cell sheet and organ bioprinting, electrospinning, and microfluidics Discussion of a wide range of diverse functions, such as bone implants, skin regeneration, vascularization, meniscus remodeling, and more Biofabrication for Orthopedics is a useful reference for those in a variety of research fields like medical-related practitioners and scientists, materials science, medicine, and manufacturing, as well as the libraries who support them.