Option Valuation Under Stochastic Volatility II

Option Valuation Under Stochastic Volatility II

Author: Alan L. Lewis

Publisher:

Published: 2016-05-12

Total Pages: 748

ISBN-13: 9780967637211

DOWNLOAD EBOOK

This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That


Stochastic Volatility Modeling

Stochastic Volatility Modeling

Author: Lorenzo Bergomi

Publisher: CRC Press

Published: 2015-12-16

Total Pages: 520

ISBN-13: 1482244071

DOWNLOAD EBOOK

Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c


Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives

Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives

Author: Jean-Pierre Fouque

Publisher: Cambridge University Press

Published: 2011-09-29

Total Pages: 456

ISBN-13: 113950245X

DOWNLOAD EBOOK

Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.


Introduction to Option Pricing Theory

Introduction to Option Pricing Theory

Author: Gopinath Kallianpur

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 1461205115

DOWNLOAD EBOOK

Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.


Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications

Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications

Author: Samuel N. Cohen

Publisher: Springer Nature

Published: 2019-08-31

Total Pages: 303

ISBN-13: 3030222853

DOWNLOAD EBOOK

This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.


Modelling and Simulation of Stochastic Volatility in Finance

Modelling and Simulation of Stochastic Volatility in Finance

Author: Christian Kahl

Publisher: Universal-Publishers

Published: 2008

Total Pages: 219

ISBN-13: 1581123833

DOWNLOAD EBOOK

The famous Black-Scholes model was the starting point of a new financial industry and has been a very important pillar of all options trading since. One of its core assumptions is that the volatility of the underlying asset is constant. It was realised early that one has to specify a dynamic on the volatility itself to get closer to market behaviour. There are mainly two aspects making this fact apparent. Considering historical evolution of volatility by analysing time series data one observes erratic behaviour over time. Secondly, backing out implied volatility from daily traded plain vanilla options, the volatility changes with strike. The most common realisations of this phenomenon are the implied volatility smile or skew. The natural question arises how to extend the Black-Scholes model appropriately. Within this book the concept of stochastic volatility is analysed and discussed with special regard to the numerical problems occurring either in calibrating the model to the market implied volatility surface or in the numerical simulation of the two-dimensional system of stochastic differential equations required to price non-vanilla financial derivatives. We introduce a new stochastic volatility model, the so-called Hyp-Hyp model, and use Watanabe's calculus to find an analytical approximation to the model implied volatility. Further, the class of affine diffusion models, such as Heston, is analysed in view of using the characteristic function and Fourier inversion techniques to value European derivatives.


Stochastic Volatility in Financial Markets

Stochastic Volatility in Financial Markets

Author: Fabio Fornari

Publisher: Springer Science & Business Media

Published: 2000-05-31

Total Pages: 168

ISBN-13: 9780792378426

DOWNLOAD EBOOK

Presenting advanced topics in financial econometrics and theoretical finance, this guide is divided into three main parts.


Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Author: Cheng Few Lee

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 5053

ISBN-13: 9811202400

DOWNLOAD EBOOK

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.