Genetic Algorithms and Fuzzy Multiobjective Optimization

Genetic Algorithms and Fuzzy Multiobjective Optimization

Author: Masatoshi Sakawa

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 306

ISBN-13: 9780792374527

DOWNLOAD EBOOK

Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.


Optimization

Optimization

Author: Rajesh Kumar Arora

Publisher: CRC Press

Published: 2015-05-06

Total Pages: 454

ISBN-13: 149872115X

DOWNLOAD EBOOK

Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co


Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms

Author: Kalyanmoy Deb

Publisher: John Wiley & Sons

Published: 2001-07-05

Total Pages: 540

ISBN-13: 9780471873396

DOWNLOAD EBOOK

Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.


Evolutionary Multiobjective Optimization

Evolutionary Multiobjective Optimization

Author: Ajith Abraham

Publisher: Springer Science & Business Media

Published: 2005-09-05

Total Pages: 313

ISBN-13: 1846281377

DOWNLOAD EBOOK

Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.


Particle Swarm Optimization with Applications

Particle Swarm Optimization with Applications

Author: Pakize Erdogmus

Publisher: BoD – Books on Demand

Published: 2018-05-30

Total Pages: 112

ISBN-13: 1789231485

DOWNLOAD EBOOK

This book is intended to gather recent studies on particle swarm optimization (PSO). In this book, readers can find the recent theoretical developments and applications on PSO algorithm. From the theoretical aspect, PSO has preserved its popularity because of the fast convergence rate, and a lot of hybrid algorithms have recently been developed in order to increase the performance of the algorithm. At the same time, PSO has also been used to solve different kinds of engineering optimization problems. In this book, a reader can find engineering applications of PSO, such as environmental economic dispatch and grid computing.


Multi-Objective Optimization using Artificial Intelligence Techniques

Multi-Objective Optimization using Artificial Intelligence Techniques

Author: Seyedali Mirjalili

Publisher: Springer

Published: 2019-07-24

Total Pages: 66

ISBN-13: 3030248356

DOWNLOAD EBOOK

This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.


Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems

Author: Carlos Coello Coello

Publisher: Springer Science & Business Media

Published: 2007-08-26

Total Pages: 810

ISBN-13: 0387367977

DOWNLOAD EBOOK

This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.


Algorithms for Convex Optimization

Algorithms for Convex Optimization

Author: Nisheeth K. Vishnoi

Publisher: Cambridge University Press

Published: 2021-10-07

Total Pages: 314

ISBN-13: 1108633994

DOWNLOAD EBOOK

In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.


Metaheuristics in Water, Geotechnical and Transport Engineering

Metaheuristics in Water, Geotechnical and Transport Engineering

Author: Xin-She Yang

Publisher: Newnes

Published: 2012-09

Total Pages: 503

ISBN-13: 0123982960

DOWNLOAD EBOOK

Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work


Evolutionary Optimization

Evolutionary Optimization

Author: Ruhul Sarker

Publisher: Springer Science & Business Media

Published: 2002-01-31

Total Pages: 416

ISBN-13: 0792376544

DOWNLOAD EBOOK

The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.