Complex Social Networks is a newly emerging (hot) topic with applications in a variety of domains, such as communication networks, engineering networks, social networks, and biological networks. In the last decade, there has been an explosive growth of research on complex real-world networks, a theme that is becoming pervasive in many disciplines, ranging from mathematics and computer science to the social and biological sciences. Optimization of complex communication networks requires a deep understanding of the interplay between the dynamics of the physical network and the information dynamics within the network. Although there are a few books addressing social networks or complex networks, none of them has specially focused on the optimization perspective of studying these networks. This book provides the basic theory of complex networks with several new mathematical approaches and optimization techniques to design and analyze dynamic complex networks. A wide range of applications and optimization problems derived from research areas such as cellular and molecular chemistry, operations research, brain physiology, epidemiology, and ecology.
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
This book helps to enhance the application of fuzzy logic optimization in the areas of science and engineering. It includes implementation and models and paradigms, such as path planning and routing design for different wireless networks, organization behavior strategies models, and so forth. It also: Explains inventory control management, uncertainties management, loss minimization, game optimization, data analysis and prediction, different decision-making system and management, and so forth Describes applicability of fuzzy optimization techniques in areas of science and management Resolves several issues based on uncertainty using member function Helps map different problems based on mathematical models Includes issues and problems based on linear and nonlinear optimizations Focuses on management science such as manpower management and inventory planning This book is aimed at researchers and graduate students in signal processing, power systems, systems and industrial engineering, and computer networks.
This book discusses the problems of Physical Layer Security (PLS) in Intelligent Reflecting Surface (IRS)-assisted wireless networks. It also discusses the corresponding methods to solve these problems in a comprehensive style. Furthermore, some potential challenges are well analyzed. This book is divided into 11 chapters. Chapter 1 introduces the propagation characteristics of IRS-aided PLS communications. From Chapter 2 to Chapter 10, The authors mainly provide deep investigations of different PLS problems of IRS-aided wireless networks, namely, directional modulation (DM) networks. Chapter 11 draws a conclusion and includes the future research directions. Researchers working in wireless communications, or advanced-level computer science or electrical engineering students, can learn about secure communication in the physical layer through our book. Professionals or engineers working in this field will also benefit from this book.
Often, no single field or expert has all the information necessary to solve complex problems, and this is no less true in the fields of electronics and communications systems. Transdisciplinary engineering solutions can address issues arising when a solution is not evident during the initial development stages in the multidisciplinary area. This book presents the proceedings of RDECS-2022, the 1st international conference on Recent Developments in Electronics and Communication Systems, held on 22 and 23 July 2022 at Aditya Engineering College, Surampalem, India. The primary goal of RDECS-2022 was to challenge existing ideas and encourage interaction between academia and industry to promote the sort of collaborative activities involving scientists, engineers, professionals, researchers, and students that play a major role in almost all fields of scientific growth. The conference also aimed to provide an arena for showcasing advancements and research endeavors being undertaken in all parts of the world. A large number of technical papers with rich content, describing ground-breaking research from participants from various institutes, were submitted for presentation at the conference. This book presents 108 of these papers, which cover a wide range of topics ranging from cloud computing to disease forecasting and from weather reporting to the detection of fake news. Offering a fascinating overview of recent research and developments in electronics and communications systems, the book will be of interest to all those working in the field.
Languages carry information. To fulfil this purpose, they employ a multitude of coding strategies. This book explores a core property of linguistic coding – called lexical diversity. Parallel text corpora of overall more than 1800 texts written in more than 1200 languages are the basis for computational analyses. Different measures of lexical diversity are discussed and tested, and Shannon’s measure of uncertainty – the entropy – is chosen to assess differences in the distributions of words. To further explain this variation, a range of descriptive, explanatory, and grouping factors are considered in a series of statistical models. The first category includes writing systems, word-formation patterns, registers and styles. The second category includes population size, non-native speaker proportions and language status. Grouping factors further elicit whether the results extrapolate across – or are limited to – specific language families and areas. This account marries information-theoretic methods with a complex systems framework, illustrating how languages adapt to the varying needs of their users. It sheds light on the puzzling diversity of human languages in a quantitative, data driven and reproducible manner.
Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.