Optimization of Biological Sulphate Reduction to Treat Inorganic Wastewaters

Optimization of Biological Sulphate Reduction to Treat Inorganic Wastewaters

Author: Joana Cassidy

Publisher: CRC Press

Published: 2020-04-27

Total Pages: 114

ISBN-13: 0429606168

DOWNLOAD EBOOK

This work investigated two different approaches to optimize biological sulphate reduction in order to develop a process control strategy to optimize the input of an electron donor and to study how to increase the feasibility of using a cheap carbon source. Feast/famine regimes, applied to design the control strategy, were shown to induce the accumulation of storage compounds in the sulphate reducing biomass. This study showed that delays in the response time and a high control gain can be considered as the most critical factors affecting a sulphide control strategy in bioreactors. The delays are caused by the induction of different metabolic pathways in the anaerobic sludge, including the accumulation of storage products. On this basis, a mathematical model was developed and validated. This can be used to develop optimal control strategies. In order to understand the microbial pathways in the anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR), diverse potential electron donors and acceptors were added to in vitro incubations of an AOM-SR enrichment at high pressure. Acetate was formed in the control group, probably resulting from the reduction of CO2. These results support the hypothesis that acetate may serve as an intermediate in the AOM-SR process.


Optimization of the Electron Donor Supply to Sulphate Reducing Bioreactors Treating Inorganic Wastewater

Optimization of the Electron Donor Supply to Sulphate Reducing Bioreactors Treating Inorganic Wastewater

Author: Luis Carlos Reyes-Alvarado

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 234

ISBN-13: 0429799292

DOWNLOAD EBOOK

The main objective of this research was to optimize the electron donor supply in sulphate reducing bioreactors treating sulphate rich wastewater. Two types of electron donor were tested: lactate and slow release electron donors such as carbohydrate based polymers and lignocellulosic biowastes. Biological sulphate reduction was evaluated in different bioreactor configurations: the inverse fluidized bed, sequencing batch and batch reactors. The reactors were tested under steady-state, high-rate and transient-state feeding conditions of electron donor and acceptor, respectively. The results showed that the inverse fluidized bed reactor configuration is robust and resilient to transient and high-rate feeding conditions at a hydraulic retention time as low as 0.125 d. The biological sulphate reduction was limited by the COD:sulphate ratio ( 82% either using carbohydrate based polymers or lignocellulosic bio-wastes, in batch bioreactors. The biological sulphate reduction was limited by the hydrolysis-fermentation rate and by the complexity of the slow release electron donors.


Optimization of Biological Sulphate Reduction to Treat Inorganic Wastewaters

Optimization of Biological Sulphate Reduction to Treat Inorganic Wastewaters

Author: Joana Cassidy

Publisher: CRC Press

Published: 2020-04-27

Total Pages: 178

ISBN-13: 0429611684

DOWNLOAD EBOOK

This work investigated two different approaches to optimize biological sulphate reduction in order to develop a process control strategy to optimize the input of an electron donor and to study how to increase the feasibility of using a cheap carbon source. Feast/famine regimes, applied to design the control strategy, were shown to induce the accumulation of storage compounds in the sulphate reducing biomass. This study showed that delays in the response time and a high control gain can be considered as the most critical factors affecting a sulphide control strategy in bioreactors. The delays are caused by the induction of different metabolic pathways in the anaerobic sludge, including the accumulation of storage products. On this basis, a mathematical model was developed and validated. This can be used to develop optimal control strategies. In order to understand the microbial pathways in the anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR), diverse potential electron donors and acceptors were added to in vitro incubations of an AOM-SR enrichment at high pressure. Acetate was formed in the control group, probably resulting from the reduction of CO2. These results support the hypothesis that acetate may serve as an intermediate in the AOM-SR process.


Biological Wastewater Treatment: Principles, Modeling and Design

Biological Wastewater Treatment: Principles, Modeling and Design

Author: Guang-Hao Chen

Publisher: IWA Publishing

Published: 2020-07-15

Total Pages: 867

ISBN-13: 1789060354

DOWNLOAD EBOOK

The first edition of this book was published in 2008 and it went on to become IWA Publishing’s bestseller. Clearly there was a need for it because over the twenty years prior to 2008, the knowledge and understanding of wastewater treatment had advanced extensively and moved away from empirically-based approaches to a fundamental first-principles approach based on chemistry, microbiology, physical and bioprocess engineering, mathematics and modelling. However the quantity, complexity and diversity of these new developments was overwhelming for young water professionals, particularly in developing countries without readily available access to advanced-level tertiary education courses in wastewater treatment. For a whole new generation of young scientists and engineers entering the wastewater treatment profession, this book assembled and integrated the postgraduate course material of a dozen or so professors from research groups around the world who have made significant contributions to the advances in wastewater treatment. This material had matured to the degree that it had been codified into mathematical models for simulation with computers. The first edition of the book offered, that upon completion of an in-depth study of its contents, the modern approach of modelling and simulation in wastewater treatment plant design and operation could be embraced with deeper insight, advanced knowledge and greater confidence, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks, or biofilm systems. However, the advances and developments in wastewater treatment have accelerated over the past 12 years since publication of the first edition. While all the chapters of the first edition have been updated to accommodate these advances and developments, some, such as granular sludge, membrane bioreactors, sulphur conversion-based bioprocesses and biofilm reactors which were new in 2008, have matured into new industry approaches and are also now included in this second edition. The target readership of this second edition remains the young water professionals, who will still be active in the field of protecting our precious water resources long after the aging professors who are leading some of these advances have retired. The authors, all still active in the field, are aware that cleaning dirty water has become more complex but that it is even more urgent now than 12 years ago, and offer this second edition to help the young water professionals engage with the scientific and bioprocess engineering principles of wastewater treatment science and technology with deeper insight, advanced knowledge and greater confidence built on stronger competence.


Handbook of Biological Wastewater Treatment

Handbook of Biological Wastewater Treatment

Author: Adrianus van Haandel

Publisher: IWA Publishing

Published: 2012-02-20

Total Pages: 819

ISBN-13: 1780400004

DOWNLOAD EBOOK

The scope of this comprehensive new edition of Handbook of Biological Wastewater Treatment ranges from the design of the activated sludge system, final settlers, auxiliary units (sludge thickeners and digesters) to pre-treatment units such as primary settlers and UASB reactors. The core of the book deals with the optimized design of biological and chemical nutrient removal. The book presents the state-of-the-art theory concerning the various aspects of the activated sludge system and develops procedures for optimized cost-based design and operation. It offers a truly integrated cost-based design method that can be easily implemented in spreadsheets and adapted to the particular needs of the user. Handbook of Biological Wastewater Treatment: Second Edition incorporates valuable new material that improves the instructive qualities of the first edition. The book has a new structure that makes the material more readily understandable and the numerous additional examples clarify the text. On the website www.wastewaterhandbook.com three free excel design spreadsheets for different configurations (secondary treatment with and without primary settling and nitrogen removal) can be downloaded to get the reader started with their own design projects. New sections have been added throughout: to explain the difference between true and apparent yield while the section on the F/M ratio, and especially the reasons not to use it, has been expanded; to demonstrate the effect of the oxygen recycle to the anoxic zones on both the denitrification capacity and the concept of available nitrate is explained in more detail. the latest developments on the causes and solution to sludge bulking and scum formation to show the rapid developments of innovative nitrogen removal and sludge separation problems the anaerobic pre-treatment section is completely rewritten based on the experiences obtained from an extensive review of large full-scale UASB based sewage treatment plants a new section on industrial anaerobic wastewater treatment three new appendices have been added. These deal with the calibration of the denitrification model, empirical design guidelines for final settler design (STORA/STOWA and ATV) and with the potential for development of denitrification in the final settler. A new chapter on moving bed biofilm reactors Handbook of Biological Wastewater Treatment: Second Edition is written for post graduate students and engineers in consulting firms and environmental protection agencies. It is an invaluable resource for everybody working in the field of wastewater treatment. Lecturer support material is available when adopted for university courses. This includes course material for the first 7 modules in the form of PDF printouts and an exercise file with questions and answers and a symbol list. Authors: Prof. dr. ir. A.C. van Haandel, Federal University of Campina Grande - Brazil and Ir. J.G.M. van der Lubbe, Biothane Systems International - Veolia, The Netherlands


Biological Phosphorus Removal

Biological Phosphorus Removal

Author: P. M. J. Janssen

Publisher: IWA Publishing

Published: 2002-05-31

Total Pages: 228

ISBN-13: 9781843390121

DOWNLOAD EBOOK

Biological phosphorus (bio-P) removal has become a reliable and well-understood process within wastewater treatment, despite being one of the most complex processes in the activated sludge process. Extended fundamental and full-scale research has been carried out into the bio-P process and the state-of-the-art is described in this report. A summarising historical overview gives insight into the establishment of the appropriate microbiological and biochemical basis of the process and the development of bio-P configurations in practice. Aspects of the bio-P process that have a direct influence on the efficiency of phosphorus removal are subjected to an in-depth investigation. This report presents guidelines for design and dimensioning in order to introduce and/or optimise the bio-P process in practice. Twelve bio-P installations are extensively described and the operational results and experiences are related to existing bio-P knowledge and guidelines. Based on a number of parameters, a comparison is made between the described bio-P plants. A steady state model is verified with extensive periods of practical experience of the plants. The bio-P model, which is provided on CD-ROM (available for download here), offers a reliable insight into the bio-P process, coupled with sensitivity analyses regarding wastewater characteristics and process parameters for the anaerobic volume and the P-ortho concentration in the final effluent. The report ends with a systematic approach to the design of the bio-P process, based on the background of the bio-P process itself, much practical experience and the analysis of operational bio-P plants. Also presented is a systematic approach to tackle operational aspects of the bio-P process in order to generate an acceptable low P effluent concentration. This optimisation of the bio-P process operation is supported by a decision diagram. Biological Phosphorus Removal will be an invaluable source of information for all those concerned with wastewater treatment, including plant managers, process designers, consultants and researchers.


Environmental Technologies to Treat Sulfur Pollution

Environmental Technologies to Treat Sulfur Pollution

Author: Piet Lens

Publisher: IWA Publishing

Published: 2000-01-01

Total Pages: 565

ISBN-13: 1900222094

DOWNLOAD EBOOK

Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering provides a definitive and detailed discussion of state-of-the-art environmental technologies to treat pollution by sulfurous compounds of wastewater, off-gases, solid waste, soils and sediments. Special attention is given to novel bioremediation techniques that have been developed over the last 10 years. Information density is unique owing to the many figures and graphs (150), tables (over 80) and over 1500 cited literature references. A detailed subject index helps the reader to find their way through the different technological applications, making it the perfect reference work for professionals and consultants dealing with sulfur-related environmental (bio)-technologies. Contents Part I - The sulfur cycle Part II - Technologies to Desulfurise Resources Part III - Treatment of Waters Polluted by Sulfurous Compounds Part IV - Treatment of Gases Polluted by Sulfurous Compounds Part V - Treatment of Soils and Sediments Polluted by Sulfurous Compounds Part VI - Other Applications of Sulfur Cycle: Bioconversions in Environmental Engineering Part VII - Problems Related to Sulfur Cycle: Bioconversions


Environmental Technologies to Treat Sulfur Pollution

Environmental Technologies to Treat Sulfur Pollution

Author: Piet Lens

Publisher: IWA Publishing

Published: 2020-09-15

Total Pages: 544

ISBN-13: 9781789060959

DOWNLOAD EBOOK

This second edition is fully updated with new material to create a comprehensive and accessible reference book: New chapters on sulfur removal via bioelectrochemical systems, use of sulfate radicals in advanced oxidation processes and sulfur nanoparticle biosynthesis. New sections on: sulfur cycle chemistry and microbiology; sulfate removal vs. recovery of resources from sulfate-rich wastewaters; microaeration for biogas desulfurisation; biological treatment of gypsum and sulfur-rich solid waste; up-to-date process control for treatment of sulfur-rich waste streams. New case studies with emphasis on practices for sewer and steel corrosion control, odour mitigation, autotrophic denitrification and bioremediation of acid mine polluted sites in both developed and developing countries have been included. Novel concepts of environmental technologies to treat sulfur pollution of wastewater, off-gases, solid waste, soils and sediments are presented. Up-to-date research findings and innovative technologies for recovering resources, i.e. metals, fertiliser, biofuels and irrigation water, from sulfur polluted waste are provided. This book may serve both as an advanced textbook for undergraduate and graduate students majoring in environmental sciences, technology or engineering as well as a handbook for tertiary educators, researchers, professionals and policymakers who conduct research and practices in the sulfur related fields. It is essential reading for consulting companies when dealing with sulfur related environmental (bio)technologies.


Sludge Reduction Technologies in Wastewater Treatment Plants

Sludge Reduction Technologies in Wastewater Treatment Plants

Author: Paola Foladori

Publisher: IWA Publishing

Published: 2010-07-31

Total Pages: 381

ISBN-13: 184339278X

DOWNLOAD EBOOK

Sludge Reduction Technologies in Wastewater Treatment Plants is a review of the sludge reduction techniques integrated in wastewater treatment plants with detailed chapters on the most promising and most widespread techniques. The aim of the book is to update the international community on the current status of knowledge and techniques in the field of sludge reduction. It will provide a comprehensive understanding of the following issues in sludge reduction: principles of sludge reduction techniques; process configurations; potential performance; advantages and drawbacks; economics and energy consumption. This book will be essential reading for managers and technical staff of wastewater treatment plants as well as graduate students and post-graduate specialists.