This book describes different approaches for solving industrial problems like product design, process optimization, quality enhancement, productivity improvement and cost minimization. Several optimization techniques are described. The book covers case studies on the applications of classical as well as evolutionary and swarm optimization tools for solving industrial issues. The content is very helpful for industry personnel, particularly engineers from the Operation, R&D and Quality Assurance sectors, and also the academic researchers of different engineering and/or business administration background.
Industrial optimization lies on the crossroads between mathematics, computer science, engineering and management. This book presents these fields in interdependence as a conversation between theoretical aspects of mathematics and computer science and the mathematical field of optimization theory at a practical level. The 19 case studies that were conducted by the author in real enterprises in cooperation and co-authorship with some of the leading industrial enterprises, including RWE, Vattenfall, EDF, PetroChina, Vestolit, Sasol, and Hella, illustrate the results that may be reasonably expected from an optimization project in a commercial enterprise. The book is aimed at persons working in industrial facilities as managers or engineers; it is also suitable for university students and their professors as an illustration of how the academic material may be used in real life. It will not make its reader a mathematician but it will help its reader in improving his plant.
This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.
This book offers a broad, in-depth overview that reflects the requirements, possibilities and limits of mathematical optimization and, especially, stochastic optimization in the energy industry.
As optimization techniques have developed, a gap has arisen between the people devising the methods and the people who actually need to use them. Research into methods is necessarily long-term and located usually in academic establishments; whereas the application of an optimization technique, normally in an industrial environment, has to be justified financially in the short term. The gap is probably inevitable; but there is no need for textbooks to reflect it. Teaching of optimization techniques separately from their connection with applications is pointless. This book gives a detailed exposition of the techniques. In this first volume, T. A. J. Nicholson demonstrates the full range of techniques available to the practitioner for the solution of varying problems. For each technique, the background reasoning behind its development is explained in simple terms; where helpful it is supported by a geometrical argument; and the iterative algorithm for finding the optimum is defined clearly. These steps enable the reader not only to see plainly what is happening in the method but also to reach a level of understanding necessary to write computer programs for optimization techniques. Problems are tackled in the same way--by searching a feasible region for an optimum. This approach helps the reader to develop the most essential of all skills--selecting appropriate techniques for different circumstances. The numerous worked examples in the text, supported by worked solutions, and the exercises at the end of the chapters are important aids to learning and to teachers. This book serves as an introduction to optimization techniques for students as well as a reference work for the practitioner in business and industry.
Delves into the core and functional areas in the upstream oil and gas industry covering a wide range of operations and processes Oil and gas exploration and production (E&P) activities are costly, risky and technology-intensive. With the rise in global demand for oil and fast depletion of easy reserves, the search for oil is directed to more difficult areas – deepwater, arctic region, hostile terrains; and future production is expected to come from increasingly difficult reserves – deeper horizon, low quality crude. All these are making E&P activities even more challenging in terms of operations, technology, cost and risk. Therefore, it is necessary to use scarce resources judiciously and optimize strategies, cost and capital, and improve business performance in all spheres of E&P business. Optimization and Business Improvement Studies in Upstream Oil and Gas Industry contains eleven real-life optimization and business improvement studies that delve into the core E&P activities and functional areas covering a wide range of operations and processes. It uses various quantitative and qualitative techniques, such as Linear Programing, Queuing theory, Critical Path Analysis, Economic analysis, Best Practices Benchmark, Business Process Simplification etc. to optimize Productivity of drilling operations Controllable rig time loss Deepwater exploration strategy Rig move time and activity schedule Offshore supply vessel fleet size Supply chain management system Strategic workforce and human resource productivity Base oil price for a country Standardize consumption of materials Develop uniform safety standards for offshore installations Improve organizational efficiency through business process simplification The book will be of immense interest to practicing managers, professionals and employees at all levels/ disciplines in oil and gas industry. It will also be useful to academicians, scholars, educational institutes, energy research institutes, and consultants dealing with oil and gas. The work can be used as a practical guide to upstream professionals and students in petroleum engineering programs.
This book provides different approaches used to analyze, draw attention, and provide an understanding of the advancements in the optimization field across the globe. It brings all of the latest methodologies, tools, and techniques related to optimization and industrial engineering into a single volume to build insights towards the latest advancements in various domains. Applications of Advanced Optimization Techniques in Industrial Engineering includes the basic concept of optimization, techniques, and applications related to industrial engineering. Concepts are introduced in a sequential way along with explanations, illustrations, and solved examples. The book goes on to explore applications of operations research and covers empirical properties of a variety of engineering disciplines. It presents network scheduling, production planning, industrial and manufacturing system issues, and their implications in the real world. The book caters to academicians, researchers, professionals in inventory analytics, business analytics, investment managers, finance firms, storage-related managers, and engineers working in engineering industries and data management fields.
In this book, theory of large scale optimization is introduced with case studies of real-world problems and applications of structured mathematical modeling. The large scale optimization methods are represented by various theories such as Benders’ decomposition, logic-based Benders’ decomposition, Lagrangian relaxation, Dantzig –Wolfe decomposition, multi-tree decomposition, Van Roy’ cross decomposition and parallel decomposition for mathematical programs such as mixed integer nonlinear programming and stochastic programming. Case studies of large scale optimization in supply chain management, smart manufacturing, and Industry 4.0 are investigated with efficient implementation for real-time solutions. The features of case studies cover a wide range of fields including the Internet of things, advanced transportation systems, energy management, supply chain networks, service systems, operations management, risk management, and financial and sales management. Instructors, graduate students, researchers, and practitioners, would benefit from this book finding the applicability of large scale optimization in asynchronous parallel optimization, real-time distributed network, and optimizing the knowledge-based expert system for convex and non-convex problems.
All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and construction management.