Optimal Design of Experiments

Optimal Design of Experiments

Author: Friedrich Pukelsheim

Publisher: SIAM

Published: 2006-04-01

Total Pages: 527

ISBN-13: 0898716047

DOWNLOAD EBOOK

Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.


Optimal Design of Experiments

Optimal Design of Experiments

Author: Peter Goos

Publisher: John Wiley & Sons

Published: 2011-06-28

Total Pages: 249

ISBN-13: 1119976162

DOWNLOAD EBOOK

"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.


Optimal Mixture Experiments

Optimal Mixture Experiments

Author: B.K. Sinha

Publisher: Springer

Published: 2014-05-24

Total Pages: 213

ISBN-13: 8132217861

DOWNLOAD EBOOK

​The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model. Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture designs in areas like agriculture, pharmaceutics and food and beverages have been presented. Familiarity with the basic concepts of design and analysis of experiments, along with the concept of optimality criteria are desirable prerequisites for a clear understanding of the book. It is likely to be helpful to both theoreticians and practitioners working in the area of mixture experiments.


mODa 11 - Advances in Model-Oriented Design and Analysis

mODa 11 - Advances in Model-Oriented Design and Analysis

Author: Joachim Kunert

Publisher: Springer

Published: 2016-06-06

Total Pages: 256

ISBN-13: 3319312669

DOWNLOAD EBOOK

This volume contains pioneering contributions to both the theory and practice of optimal experimental design. Topics include the optimality of designs in linear and nonlinear models, as well as designs for correlated observations and for sequential experimentation. There is an emphasis on applications to medicine, in particular, to the design of clinical trials. Scientists from Europe, the US, Asia, Australia and Africa contributed to this volume of papers from the 11th Workshop on Model Oriented Design and Analysis.


Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015

Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015

Author: Ershi Qi

Publisher: Springer

Published: 2016-01-29

Total Pages: 927

ISBN-13: 9462391807

DOWNLOAD EBOOK

Being the premier forum for the presentation of new advances and research results in the fields of Industrial Engineering, IEEM 2015 aims to provide a high-level international forum for experts, scholars and entrepreneurs at home and abroad to present the recent advances, new techniques and applications face and face, to promote discussion and interaction among academics, researchers and professionals to promote the developments and applications of the related theories and technologies in universities and enterprises, and to establish business or research relations to find global partners for future collaboration in the field of Industrial Engineering. All the goals of the international conference are to fulfill the mission of the series conference which is to review, exchange, summarize and promote the latest achievements in the field of industrial engineering and engineering management over the past year, and to propose prospects and vision for the further development. This volume is the first of the two proceedings volumes from this conference.


Optimal Design for Nonlinear Response Models

Optimal Design for Nonlinear Response Models

Author: Valerii V. Fedorov

Publisher: CRC Press

Published: 2013-07-15

Total Pages: 404

ISBN-13: 1439821518

DOWNLOAD EBOOK

Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors’ many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss adaptive designs, focusing on procedures with non-informative stopping. The common goals of experimental design—such as reducing costs, supporting efficient decision making, and gaining maximum information under various constraints—are often the same across diverse applied areas. Ethical and regulatory aspects play a much more prominent role in biological, medical, and pharmaceutical research. The authors address all of these issues through many examples in the book.


Design of Experiments for Engineers and Scientists

Design of Experiments for Engineers and Scientists

Author: Jiju Antony

Publisher: Elsevier

Published: 2014-02-22

Total Pages: 221

ISBN-13: 0080994199

DOWNLOAD EBOOK

The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry


Sequential Analysis

Sequential Analysis

Author: Abraham Wald

Publisher: Courier Corporation

Published: 2013-11-26

Total Pages: 228

ISBN-13: 0486783235

DOWNLOAD EBOOK

The first to solve the general problem of sequential tests of statistical hypotheses, the author of this text explains his revolutionary theory of the sequential probability ratio test and its applications. 1947 edition.


Optimal Design of Experiments

Optimal Design of Experiments

Author: Friedrich Pukelsheim

Publisher: SIAM

Published: 1993-01-01

Total Pages: 483

ISBN-13: 9780898719109

DOWNLOAD EBOOK

Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer information matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples. Since the book's initial publication in 1993, readers have used its methods to derive optimal designs on the circle, optimal mixture designs, and optimal designs in other statistical models. Using local linearization techniques, the methods described in the book prove useful even for nonlinear cases, in identifying practical designs of experiments. Audience: anyone involved in planning statistical experiments, including mathematical statisticians, applied statisticians, and mathematicians interested in matrix optimization problems.