This book has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide by those whose work involves the theoretical aspects of dynamic optimization and differential games.
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
This comprehensive work examines important recent developments and modern applications in the fields of optimization, control, game theory and equilibrium programming. In particular, the concepts of equilibrium and optimality are of immense practical importance affecting decision-making problems regarding policy and strategies, and in understanding and predicting systems in different application domains, ranging from economics and engineering to military applications. The book consists of 29 survey chapters written by distinguished researchers in the above areas.
This book is written by leading scholars in Network Science, Nonlinear Science and Infrastructure Systems, expressly to develop common theoretical underpinnings for better solutions to modern infrastructural problems. The book is dedicated to the formulation of infrastructural tools that will better solve problems from transportation networks to telecommunications, Internet, supply chains and more.
Over the past thirty-five years, a substantial amount of theoretical and empirical scholarly research has been developed across the discipline domains of Transportation. This research has been synthesized into a systematic handbook that examines the scientific concepts, methods, and principles of this growing and evolving field. The Handbook of Transportation Science outlines the field of transportation as a scientific discipline that transcends transportation technology and methods. Whether by car, truck, airplane - or by a mode of transportation that has not yet been conceived - transportation obeys fundamental properties. The science of transportation defines these properties, and demonstrates how our knowledge of one mode of transportation can be used to explain the behavior of another. Transportation scientists are motivated by the desire to explain spatial interactions that result in movement of people or objects from place to place. Its methodologies draw from physics, operations research, probability and control theory.
A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.
Rigorous treatments of issues related to congestion pricing are described in this book. It examines recent advances in areas such as mathematical and computational models for predicting traffic congestion, determining when, where, and how much to levy tolls, and analyzing the impact on transportation systems. The book follows recent schemes judged to be successful in London, Singapore, Norway, as well as a number of projects in the United States.
Since the publication of the first edition of Network Economics: A Variational Inequality Approach in 1993, there have been many ad vances in both methodological developments, as well as, applications in this field. These have occurred in an environment of an increasingly networked global economy, in which the importance of transportation networks and communication networks is now well-recognized, with net works such as knowledge networks, environmental networks, and finan cial networks receiving growing attention. This edition adds recent research progress in new and evolving ar eas of network economics through common and unifying principles. In addition, it includes dynamic models of traffic, of spatially separated markets, of oligopolistic markets, and of financial markets. In order to expand the range and reach of this material, we have also included a series of problems in an appendix for self-study purposes and for use in the classroom. We note that computational economics has been at the forefront in stimulating the development of mathematical methodologies for the analysis and solution of complex, large-scale problems. The past fifteen years, in particular, have witnessed a dramatic growth of interest in this area. Supported by the increasing availability of data and by advances in computer architectures, the scale and dimensions of problems that can now be handled are unveiling new horizons in both theoretical modeling and policy analysis.