Operator Structures and Dynamical Systems

Operator Structures and Dynamical Systems

Author: Marcel de Jeu

Publisher: American Mathematical Soc.

Published: 2009-11-30

Total Pages: 329

ISBN-13: 0821847473

DOWNLOAD EBOOK

This volume contains the proceedings of a Leiden Workshop on Dynamical Systems and their accompanying Operator Structures which took place at the Lorentz Center in Leiden, The Netherlands, on July 21-25, 2008. These papers offer a panorama of selfadjoint and non-selfadjoint operator algebras associated with both noncommutative and commutative (topological) dynamical systems and related subjects. Papers on general theory, as well as more specialized ones on symbolic dynamics and complex dynamical systems, are included.


The Koopman Operator in Systems and Control

The Koopman Operator in Systems and Control

Author: Alexandre Mauroy

Publisher: Springer Nature

Published: 2020-02-22

Total Pages: 568

ISBN-13: 3030357139

DOWNLOAD EBOOK

This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.


Differential Equations, Dynamical Systems, and Linear Algebra

Differential Equations, Dynamical Systems, and Linear Algebra

Author: Morris W. Hirsch

Publisher: Academic Press

Published: 1974-06-28

Total Pages: 373

ISBN-13: 0080873766

DOWNLOAD EBOOK

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.


Chaos in Structural Mechanics

Chaos in Structural Mechanics

Author: Jan Awrejcewicz

Publisher: Springer Science & Business Media

Published: 2009-11-11

Total Pages: 424

ISBN-13: 3540776761

DOWNLOAD EBOOK

This volume introduces new approaches to modeling strongly nonlinear behaviour of structural mechanical units: beams, plates and shells or composite systems. The text draws on bifurcation theory and chaos, emphasizing control and stability of objects and systems.


Operator Algebra and Dynamics

Operator Algebra and Dynamics

Author: Toke M. Carlsen

Publisher: Springer Science & Business Media

Published: 2013-12-03

Total Pages: 343

ISBN-13: 3642394590

DOWNLOAD EBOOK

Based on presentations given at the NordForsk Network Closing Conference “Operator Algebra and Dynamics,” held in Gjáargarður, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operator algebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filtered K-theory over finite topological spaces, C*-algebras associated to shift spaces (or subshifts), graph C*-algebras, irrational extended rotation algebras that are shown to be C*-alloys, free probability, renewal systems, the Grothendieck Theorem for jointly completely bounded bilinear forms on C*-algebras, Cuntz-Li algebras associated with the a-adic numbers, crossed products of injective endomorphisms (the so-called Stacey crossed products), the interplay between dynamical systems, operator algebras and wavelets on fractals, C*-completions of the Hecke algebra of a Hecke pair, semiprojective C*-algebras, and the topological dimension of type I C*-algebras. Operator Algebra and Dynamics will serve as a useful resource for a broad spectrum of researchers and students in mathematics, physics, and engineering.


Operator Theoretic Aspects of Ergodic Theory

Operator Theoretic Aspects of Ergodic Theory

Author: Tanja Eisner

Publisher: Springer

Published: 2015-11-18

Total Pages: 630

ISBN-13: 3319168983

DOWNLOAD EBOOK

Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory


Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Author: Denis Blackmore

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 563

ISBN-13: 9814462713

DOWNLOAD EBOOK

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.


Ergodic Theory, Open Dynamics, and Coherent Structures

Ergodic Theory, Open Dynamics, and Coherent Structures

Author: Wael Bahsoun

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9781493943265

DOWNLOAD EBOOK

This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, numerical dynamical systems, molecular dynamics and ocean/atmosphere dynamics, nonequilibrium statistical mechanics. The volume will serve as a valuable reference for mathematicians, physicists, engineers, biologists and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open or non-equilibrium behavior.