These proceedings provide information on the most recent advances in operations research and related areas in economics, mathematics, and computer science, contributed by academics and practitioners from around the world.
A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.
An Annotated Timeline of Operations Research: An Informal History recounts the evolution of Operations Research (OR) as a new science - the science of decision making. Arising from the urgent operational issues of World War II, the philosophy and methodology of OR has permeated the resolution of decision problems in business, industry, and government. The Timeline chronicles the history of OR in the form of self-contained, expository entries. Each entry presents a concise explanation of the events and people under discussion, and provides key sources where further relevant information can be obtained. In addition, books and papers that have influenced the development of OR or helped to educate the first generations of OR academics and practitioners are cited throughout the book. Starting in 1564 with seminal ideas that form the precursors of OR, the Timeline traces the key ideas and events of OR through 2004. The Timeline should interest anyone involved in OR - researchers, practitioners, academics, and, especially, students - who wish to learn how OR came into being. Further, the scope and expository style of the Timeline should make it of value to the general reader interested in the development of science and technology in the last half of the twentieth century.
Digital systems that bring together the computing capacity for processing large bodies of information with the human cognitive capability are called intelligent systems. Building these systems has become one of the great goals of modem technology. This goal has both intellectual and economic incentives. The need for such intelligent systems has become more intense in the face of the global connectivity of the internet. There has become an almost insatiable requirement for instantaneous information and decision brought about by this confluence of computing and communication. This requirement can only be satisfied by the construction of innovative intelligent systems. A second and perhaps an even more significant development is the great advances being made in genetics and related areas of biotechnology. Future developments in biotechnology may open the possibility for the development of a true human-silicon interaction at the micro level, neural and cellular, bringing about a need for "intelligent" systems. What is needed to further the development of intelligent systems are tools to enable the representation of human cognition in a manner that allows formal manipulation. The idea of developing such an algebra goes back to Leibniz in the 17th century with his dream of a calculus ratiocinator. It wasn't until two hundred years later beginning with the work of Boole, Cantor and Frege that a formal mathematical logic for modeling human reasoning was developed. The introduction of the modem digital computer during the Second World War by von Neumann and others was a culmination of this intellectual trend.