Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
This book provides the most comprehensive mathematical treatment to date of the Feynman path integral and Feynman's operational calculus. It is accessible to mathematicians, mathematical physicists and theoretical physicists. Including new results and much material previously only available in the research literature, this book discusses both the mathematics and physics background that motivate the study of the Feynman path integral and Feynman's operational calculus, and also provides more detailed proofs of the central results.
In these proceedings of the international conference held in Kyoto in memoryof the late Professor K saku Yosida, twenty six invited speakers display in their many facets of functional analysis and its applications in the research tradition of Yosida's school. Many of the topics are related tolinear and non-linear partial differential equations, including the Schr|dinger equations, the Navier-Stokes equations and quasilinear hyperbolic equations. Several of the papers are survey articles, the others are original (unpublished) and refereed research articles. Also included is a full listing of the publications of K. Yosida. Recommendedto students and research workers looking for a bird's-eye view of current research activity in functional analysis and its applications. FROM THE CONTENTS: K. Ito: Semigroups in probability theory.- T. Kato: Abstract evolution equations, linear and quasilinear, revisited.- J.L. Lions: Remarkson systems with incompletely given initial data and incompletely given part of the boundary.- H. Brezis: New energies for harmonic maps and liquid crystals.- D. Fujiwara: Some Feynman path integrals as oscillatory integrals over a Sobolev manifold.- M. Giga, Y. Giga, H. Sohr: L estimates for the Stokes system.- Y. Kawahigashi: Exactly solvable orbifold models and subfactors.- H. Kitada: Asymptotic completeness of N-body wave operators II. A new proof for the short-range case and the asymptotic clustering for the long-range systems. Y. Kobayashi, S. Oharu: Semigroups oflocally Lipschitzian operators and applications.- H. Komatsu: Operational calculus and semi-groups of operators.
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.
Suitable for advanced undergraduates and graduate students, this brief monograph examines elementary and convergence theories of convolution quotients, differential equations involving operator functions, exponential functions of operators. Solutions. 1962 edition.