Serves as a single source reference, from the basic theory to practical cases, for certification flight testing and operational performance monitoring. The book provides more real-life examples than are offered in traditional textbooks.
Introduction to Flight Testing Introduction to Flight Testing Provides an introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles Introduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student. This text presents a clear articulation of standard methods for measuring aircraft performance characteristics. Topics covered include aircraft and instruments, digital data acquisition techniques, flight test planning, the standard atmosphere, uncertainty analysis, level flight performance, airspeed calibration, stall, climb and glide, take-off and landing, level turn, static and dynamic longitudinal stability, lateral-directional stability, and flight testing of unmanned aircraft systems. Unique to this book is a detailed discussion of digital data acquisition (DAQ) techniques, which are an integral part of modern flight test programs. This treatment includes discussion of the analog-to-digital conversion, sample rate, aliasing, and filtering. These critical details provide the flight test engineer with the insight needed to understand the capabilities and limitations of digital DAQ. Key features: Provides an introduction to the basic flight testing methods and instrumentation employed on general aviation aircraft and unmanned aerial vehicles. Includes examples of flight testing on general aviation aircraft such as Cirrus, Diamond, and Cessna aircraft, along with unmanned aircraft vehicles. Suitable for courses on Aircraft Flight Test Engineering. Introduction to Flight Testing provides resources and guidance for practitioners in the rapidly-developing field of drone performance flight test and the general aviation flight test community.
The new European Joint Aviation Requirements (JARs) lay down rules governing the minimum levels of performance which must be attained by every type of public transport aeroplane. These rules cover matters such as weight, altitude and temperature, take-off and landing distance, cruise flight level and speed, and descent angle and rate. The subject of aircraft performance forms an important part of all JAR Flight Crew Licensing examinations for commercial and airline transport pilot licences, and this book provides a clear but authoritative text on a difficult topic. It will also be of interest to commercial pilots needing to upgrade their annual ground test to JAR standards, and to flight planners, operations controllers and airport operators.
An introduction into the art and science of measuring and predicting airplane performance, ""Introduction to Flight Testing and Applied Aerodynamics"" will benefit students, homebuilders, pilots, and engineers in learning how to collect and analyze data relevant to the takeoff, climb, cruise, handling qualities, descent, and landing of an aircraft. This textbook presents a basic and concise analysis of airplane performance, stability, and control. Basic algebra, trigonometry, and some calculus are used. Topics discussed include: Engine and propeller performance; Estimation of drag; Airplane dynamics; Wing spanwise lift distributions; Flight experimentation; Airspeed calibration; Takeoff performance; Climb performance; and, Dynamic and static stability. Special features: examples containing student-obtained data about specific airplanes and engines; simple experiments that determine an airplane's performance and handling qualities; and, end-of-chapter problems (with answers supplied in an appendix).
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Annotation The measurement of performance during an airplane's flight, testing is one of the more important tasks to be accomplished during its development as it impacts on both the airplane's safety and its marketability. This book discusses performance for both propeller-driven and jet aircraft.
Textbook introducing the fundamentals of aircraft performance using industry standards and examples: bridging the gap between academia and industry Provides an extensive and detailed treatment of all segments of mission profile and overall aircraft performance Considers operating costs, safety, environmental and related systems issues Includes worked examples relating to current aircraft (Learjet 45, Tucano Turboprop Trainer, Advanced Jet Trainer and Airbus A320 types of aircraft) Suitable as a textbook for aircraft performance courses
Aircraft performance is one of the key aspects of the aircraft industry. Starting with the consideration that performance theory is the defining factor in aircraft design, the author then covers the measurement of performance for the certification, management and operation of aircraft. This practical book discusses performance measures which relate to airworthiness certificates (a legal requirement), as well as those needed when compiling the aircraft performance manual for the aircraft. In addition, operational performance is covered, including the financial considerations required by airlines to ensure maximisation of commercial return. * Available in North and South America from the AIAA, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191, USA Complete coverage of aircraft performance. Includes flight measurement of performance, including airworthiness, certification and the performance manual.
When discussing the risk of introducing drones into the National Airspace System, it is necessary to consider the increase in risk to people in manned aircraft and on the ground as well as the various ways in which this new technology may reduce risk and save lives, sometimes in ways that cannot readily be accounted for with current safety assessment processes. This report examines the various ways that risk can be defined and applied to integrating these Unmanned Aircraft Systems (UAS) into the National Airspace System managed by the Federal Aviation Administration (FAA). It also identifies needs for additional research and developmental opportunities in this field.