Open-Domain Question Answering is an introduction to the field of Question Answering (QA). It covers the basic principles of QA along with a selection of systems that have exhibited interesting and significant techniques, so it serves more as a tutorial than as an exhaustive survey of the field. Starting with a brief history of the field, it goes on to describe the architecture of a QA system before analysing in detail some of the specific approaches that have been successfully deployed by academia and industry designing and building such systems. Open-Domain Question Answering is both a guide for beginners who are embarking on research in this area, and a useful reference for established researchers and practitioners in this field.
This new Springer volume provides a comprehensive and detailed look at current approaches to automated question answering. The level of presentation is suitable for newcomers to the field as well as for professionals wishing to study this area and/or to build practical QA systems. The book can serve as a "how-to" handbook for IT practitioners and system developers. It can also be used to teach graduate courses in Computer Science, Information Science and related disciplines.
This book constitutes the refereed proceedings of the 2021 International Conference on Business Intelligence and Information Technology (BIIT 2021) held in Harbin, China, during December 18–20, 2021. BIIT 2021 is organized by the School of Computer and Information Engineering, Harbin University of Commerce, and supported by Scientific Research Group in Egypt (SRGE), Egypt. The papers cover current research in electronic commerce technology and application, business intelligence and decision making, digital economy, accounting informatization, intelligent information processing, image processing and multimedia technology, signal detection and processing, communication engineering and technology, information security, automatic control technique, data mining, software development, and design, blockchain technology, big data technology, artificial intelligence technology.
Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
This book is the result of a group of researchers from different disciplines asking themselves one question: what does it take to develop a computer interface that listens, talks, and can answer questions in a domain? First, obviously, it takes specialized modules for speech recognition and synthesis, human interaction management (dialogue, input fusion, and multimodal output fusion), basic question understanding, and answer finding. While all modules are researched as independent subfields, this book describes the development of state-of-the-art modules and their integration into a single, working application capable of answering medical (encyclopedic) questions such as "How long is a person with measles contagious?" or "How can I prevent RSI?". The contributions in this book, which grew out of the IMIX project funded by the Netherlands Organisation for Scientific Research, document the development of this system, but also address more general issues in natural language processing, such as the development of multidimensional dialogue systems, the acquisition of taxonomic knowledge from text, answer fusion, sequence processing for domain-specific entity recognition, and syntactic parsing for question answering. Together, they offer an overview of the most important findings and lessons learned in the scope of the IMIX project, making the book of interest to both academic and commercial developers of human-machine interaction systems in Dutch or any other language. Highlights include: integrating multi-modal input fusion in dialogue management (Van Schooten and Op den Akker), state-of-the-art approaches to the extraction of term variants (Van der Plas, Tiedemann, and Fahmi; Tjong Kim Sang, Hofmann, and De Rijke), and multi-modal answer fusion (two chapters by Van Hooijdonk, Bosma, Krahmer, Maes, Theune, and Marsi). Watch the IMIX movie at www.nwo.nl/imix-film. Like IBM's Watson, the IMIX system described in the book gives naturally phrased responses to naturally posed questions. Where Watson can only generate synthetic speech, the IMIX system also recognizes speech. On the other hand, Watson is able to win a television quiz, while the IMIX system is domain-specific, answering only to medical questions. "The Netherlands has always been one of the leaders in the general field of Human Language Technology, and IMIX is no exception. It was a very ambitious program, with a remarkably successful performance leading to interesting results. The teams covered a remarkable amount of territory in the general sphere of multimodal question answering and information delivery, question answering, information extraction and component technologies." Eduard Hovy, USC, USA, Jon Oberlander, University of Edinburgh, Scotland, and Norbert Reithinger, DFKI, Germany
This book constitutes the proceedings of this year’s Sustainable Smart Cities and Territories International Conference (SSCt 2021), held in Doha, Qatar, from the 27th to the 29th of April 2021. The SSCt 2021 is an open symposium that brings together researchers and developers from academia and industry to present and discuss the latest scientific and technical advances in the fields of Smart Cities and Smart Territories. It promotes an environment for discussion on how techniques, methods, and tools help system designers accomplish the transition from the current cities towards those we need in a changing world. The program includes keynote abstracts, a main technical track, two workshops, and a doctoral consortium. The symposium is organized by the Texas A&M University at Qatar. We would like to thank all the contributing authors, the members of the Local Committee, Scientific Committee, Organizing Committee, and the sponsors (Texas A&M University of Qatar, AIR Institute and the IoT Digital Innovation Hub) for their hard work and dedication.
The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021. The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows: Part I: Applications of knowledge discovery and data mining of specialized data; Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics; Part III: Representation learning and embedding, and learning from data.
In recent years, we have witnessed an explosive growth in multimediacomputing, communication and applications. This revolution istransforming the way people live, work and interact with each other, and is impacting the way business, government services, education, entertainment and health care operate. This important book summarizes recent research topics, focusing onfour major areas: (1) intelligent content-based information retrievaland virtual world, (2) quality-of-services of multimedia data, (3)intelligent techniques for distance education, and (4) intelligentagents for e-commerc
Machine reading comprehension (MRC) is a cutting-edge technology in natural language processing (NLP). MRC has recently advanced significantly, surpassing human parity in several public datasets. It has also been widely deployed by industry in search engine and quality assurance systems. Machine Reading Comprehension: Algorithms and Practice performs a deep-dive into MRC, offering a resource on the complex tasks this technology involves. The title presents the fundamentals of NLP and deep learning, before introducing the task, models, and applications of MRC. This volume gives theoretical treatment to solutions and gives detailed analysis of code, and considers applications in real-world industry. The book includes basic concepts, tasks, datasets, NLP tools, deep learning models and architecture, and insight from hands-on experience. In addition, the title presents the latest advances from the past two years of research. Structured into three sections and eight chapters, this book presents the basis of MRC; MRC models; and hands-on issues in application. This book offers a comprehensive solution for researchers in industry and academia who are looking to understand and deploy machine reading comprehension within natural language processing. - Presents the first comprehensive resource on machine reading comprehension (MRC) - Performs a deep-dive into MRC, from fundamentals to latest developments - Offers the latest thinking and research in the field of MRC, including the BERT model - Provides theoretical discussion, code analysis, and real-world applications of MRC - Gives insight from research which has led to surpassing human parity in MRC