Online Parameter Identification for Optimal Feedback Control of Nonlinear Dynamical Systems

Online Parameter Identification for Optimal Feedback Control of Nonlinear Dynamical Systems

Author: Margareta Runge

Publisher:

Published: 2024

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This research aims to enhance current methods for the optimal feedback control of complex nonlinear dynamical systems via online parameter identifications. Accurate knowledge of the system parameters is essential in numerous practical applications to ensure effective control. A considerable number of advanced control algorithms use model-based approaches. However, the model parameters may often be unknown or subject to change over time. This could result in deviations from the feedback control objective, increased expected costs, and even divergence of the controller. The main objective of this thesis is to develop a combined online parameter identification and model-based controller approach that allows continuously estimating the model parameters of a nonlinear system. The available real-time measurements of the system are used to compute an approximation of the searched parameters. This repeated parameter estimation enables the control algorithm to adapt to the changing system dynamics and maintain optimal control accuracy. This study investigates three approaches. First, a coupled algorithm is developed that employs parameter identifications during operation to adapt a linear quadratic regulator using techniques from parametric sensitivity analysis. Additionally, an approach is presented that also examines the information quality in the data used to predict the probability of success of the parameter estimation. An adaptive control algorithm using nonlinear model predictive control (NMPC) and online parameter identification is proposed as a third alternative. All proposed techniques rely on highly efficient numerical methods for solving nonlinear optimization problems (NLP) and the potential to transfer related problems from optimal control into an NLP by discretization. The proposed approaches are extensively evaluated by conducting simulations and comparing them to the existing standard control methods.


Optimal Feedback Controls for Parameter Identification

Optimal Feedback Controls for Parameter Identification

Author: David N. Olmstead

Publisher:

Published: 1979

Total Pages: 177

ISBN-13:

DOWNLOAD EBOOK

This dissertation investigates improving the estimates of unknown constant parameters in the plant and control matrices of a linear discrete system from noisy measurements by the use of a control consisting of a feedback term and open-loop term. The feedback term allows one to move the poles of the system to location which improve the information in the output about the parameters beyond that attainable with only open-loop control inputs. An energy constraint is placed on the open-loop term of the control and the closed-loop poles are required to remain within a predetermined constraint space. Output feedback is used and for the cases where the dimension of the output is less than the dimension of the system states, an additional consistency constraint on the closed-loop poles is required. The criterion that has been used is the maximization of the trace or weighted trace of the Fisher information matrix. A graident projection algorithm has been developed that maximizes this scalar function while maintaining the poles within the constraint space. This procedure results in maximizing the sum of a maximum eigenvalue of a positive semi-definite matrix and a term resulting from the feedback of measurement noise into the process equations. The variable in this maximizaton procedure is the feedback matrix. The optimal open-loop control sequence is a scaled eigenvector corresponding to the maximum eigenvalue. The procedure is developed for the multiple parameter and multiple input control cases. Examples are used to demonstrate the enhancement of parameter identification gained by adding feedback control to an open-loop control input. (Author).


Reinforcement Learning for Optimal Feedback Control

Reinforcement Learning for Optimal Feedback Control

Author: Rushikesh Kamalapurkar

Publisher: Springer

Published: 2018-05-10

Total Pages: 305

ISBN-13: 331978384X

DOWNLOAD EBOOK

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.


Flight Dynamics

Flight Dynamics

Author: Robert F. Stengel

Publisher: Princeton University Press

Published: 2022-11-01

Total Pages: 914

ISBN-13: 0691237042

DOWNLOAD EBOOK

An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book


Optimal Measurement Methods for Distributed Parameter System Identification

Optimal Measurement Methods for Distributed Parameter System Identification

Author: Dariusz Ucinski

Publisher: CRC Press

Published: 2004-08-27

Total Pages: 392

ISBN-13: 0203026780

DOWNLOAD EBOOK

For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.


Optimal Control

Optimal Control

Author: Brian D. O. Anderson

Publisher: Courier Corporation

Published: 2007-02-27

Total Pages: 465

ISBN-13: 0486457664

DOWNLOAD EBOOK

Numerous examples highlight this treatment of the use of linear quadratic Gaussian methods for control system design. It explores linear optimal control theory from an engineering viewpoint, with illustrations of practical applications. Key topics include loop-recovery techniques, frequency shaping, and controller reduction. Numerous examples and complete solutions. 1990 edition.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Innovative Techniques and Applications of Modelling, Identification and Control

Innovative Techniques and Applications of Modelling, Identification and Control

Author: Quanmin Zhu

Publisher: Springer

Published: 2018-04-20

Total Pages: 455

ISBN-13: 9811072124

DOWNLOAD EBOOK

This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC’17), held in Kunming, China on July 10–12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.