The first elementary, general text on two-phase flow suitable for graduate students in engineering, this widely used monograph has been newly updated by author Graham B. Wallis. The two-part treatment focuses on analytical techniques and practical applications. Praised by the Journal of Fluid Mechanics for its "most useful compilation of experimental results," the text features much of the author's own work.
Over the past two decades, two-phase flow and heat transfer problems associated with two-phase phenomena have been a challenge to many investigators. Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide vari ety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. The Horkshop was attended by more than 50 leading scientists and practicing engineers who work actively on two-phase flow and heat transfer research and applications in dif ferent sectors (academia, government, industry) of member countries of NATO. Some scientific leaders and experts on the subject matter from the non-NATO countries were also invited. They convened to discuss the state-of-the-art in two-phase flow and heat transfer and formulated recommendations for future research directions. To achieve these goals, invited key papers and a limited number of contributions were presented and discussed. The specific aspects of the subject were treated in depth in the panel sessions, and the unresolved problems identified. Suitable as a practical reference, these volumes incorporate a systematic approach to two-phase flow analysis.
Here, the author, a researcher of outstanding experience in this field, summarizes and combines the recent results and findings on advanced two-phase flow modeling and numerical methods otherwise dispersed in various journals, while also providing explanations for numerical and modeling techniques previously not covered by other books. The resulting systematic and comprehensive monograph is unrivalled in its kind, serving as a reference for both researchers and engineers working in engineering as well as in environmental science.
This IMA Volume in Mathematics and its Applications TWO PHASE FLOWS AND WAVES is based on the proceedings of a workshop which was an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshop focussed on the development of waves in flowing composites. We thank the Coordinating Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing the stimulating year-long program. We especially thank the Workshop Organizers, Daniel D. Joseph and David G. Schaeffer for their efforts in bringing together many of the major figures in those research fields in which modelling of granular flows and suspensions is used. Avner Friedman Willard Miller, Jr. PREFACE This Workshop, held from January 3-10,1989 at IMA, focused on the properties of materials which consist of many small solid particles or grains. Let us distinguish the terms granular material and suspension. In the former, the material consists exclusively of solid particles interacting through direct contact with one another, either sustained frictional contacts in the case of slow shearing or collisions in the case of rapid shearing. In suspensions, also called two phase flow, the grains interact with one another primarily through the influence of a viscous fluid which occupies the interstitial space and participates in the flow. (As shown by the lecture of I. Vardoulakis (not included in this volume), the distinction between these two idealized cases is not always clear.