Introduction to Hydrodynamic Stability

Introduction to Hydrodynamic Stability

Author: P. G. Drazin

Publisher: Cambridge University Press

Published: 2002-09-09

Total Pages: 278

ISBN-13: 1316582876

DOWNLOAD EBOOK

Instability of flows and their transition to turbulence are widespread phenomena in engineering and the natural environment, and are important in applied mathematics, astrophysics, biology, geophysics, meteorology, oceanography and physics as well as engineering. This is a textbook to introduce these phenomena at a level suitable for a graduate course, by modelling them mathematically, and describing numerical simulations and laboratory experiments. The visualization of instabilities is emphasized, with many figures, and in references to more still and moving pictures. The relation of chaos to transition is discussed at length. Many worked examples and exercises for students illustrate the ideas of the text. Readers are assumed to be fluent in linear algebra, advanced calculus, elementary theory of ordinary differential equations, complex variables and the elements of fluid mechanics. The book is aimed at graduate students but will also be very useful for specialists in other fields.


Theory and Computation in Hydrodynamic Stability

Theory and Computation in Hydrodynamic Stability

Author: W. O. Criminale

Publisher: Cambridge University Press

Published: 2019

Total Pages: 565

ISBN-13: 1108475337

DOWNLOAD EBOOK

Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.


Hydrodynamic Stability Theory

Hydrodynamic Stability Theory

Author: A. Georgescu

Publisher: Taylor & Francis

Published: 1985

Total Pages: 318

ISBN-13: 9789024731206

DOWNLOAD EBOOK

The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.


Hydrodynamic Stability

Hydrodynamic Stability

Author: P. G. Drazin

Publisher: Cambridge University Press

Published: 2004-08-05

Total Pages: 630

ISBN-13: 9780521525411

DOWNLOAD EBOOK

Hydrodynamic stability is of fundamental importance in fluid mechanics and is concerned with the problem of transition from laminar to turbulent flow. Drazin and Reid emphasise throughout the ideas involved, the physical mechanisms, the methods used, and the results obtained, and, wherever possible, relate the theory to both experimental and numerical results. A distinctive feature of the book is the large number of problems it contains. These problems not only provide exercises for students but also provide many additional results in a concise form. This new edition of this celebrated introduction differs principally by the inclusion of detailed solutions for those exercises, and by the addition of a Foreword by Professor J. W. Miles.


Theory and Computation of Hydrodynamic Stability

Theory and Computation of Hydrodynamic Stability

Author: W. O. Criminale

Publisher: Cambridge University Press

Published: 2003-10-23

Total Pages: 465

ISBN-13: 0521632005

DOWNLOAD EBOOK

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing chapter by chapter to the most complex, considering linear and nonlinear situations, and analysing temporal and spatial stability. The authors examine each problem both analytically and numerically: many chapters end with an appendix outlining relevant numerical techniques. All relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability. As a result, the early transient period as well as the asymptotic fate for perturbations for a flow can be assessed. The text is enriched with many exercises, copious illustrations and an extensive bibliography and the result is a book that can be used with courses on hydrodynamic stability or as an authoritative reference for researchers.


Hydrodynamic Instability and Transition to Turbulence

Hydrodynamic Instability and Transition to Turbulence

Author: Akiva M. Yaglom

Publisher: Springer Science & Business Media

Published: 2012-12-18

Total Pages: 611

ISBN-13: 9400742371

DOWNLOAD EBOOK

This book is a complete revision of the part of Monin & Yaglom's famous two-volume work "Statistical Fluid Mechanics: Mechanics of Turbulence" that deals with the theory of laminar-flow instability and transition to turbulence. It includes the considerable advances in the subject that have been made in the last 15 years or so. It is intended as a textbook for advanced graduate courses and as a reference for research students and professional research workers. The first two Chapters are an introduction to the mathematics, and the experimental results, for the instability of laminar (or inviscid) flows to infinitesimal (in practice "small") disturbances. The third Chapter develops this linear theory in more detail and describes its application to particular problems. Chapters 4 and 5 deal with instability to finite-amplitude disturbances: much of the material has previously been available only in research papers.


Stability and Transition in Shear Flows

Stability and Transition in Shear Flows

Author: Peter J. Schmid

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 561

ISBN-13: 1461301858

DOWNLOAD EBOOK

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.


Hydrodynamic stability theory

Hydrodynamic stability theory

Author: A. Georgescu

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 306

ISBN-13: 9401718148

DOWNLOAD EBOOK

The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.