On the Influence of Piecewise Defined Contact Geometries on Friction Dampers

On the Influence of Piecewise Defined Contact Geometries on Friction Dampers

Author: Aramendiz Fuentes, Jimmy Alberto

Publisher: KIT Scientific Publishing

Published: 2023-09-12

Total Pages: 180

ISBN-13: 373151267X

DOWNLOAD EBOOK

This work considers dampers that do not solely focus on a single strategy but instead combine them. The capabilities of conventional dry friction dampers are expanded by taking into account piecewise defined contact geometries. This leads to friction dampers that change their behavior depending on the amplitude of the oscillations. The vibration damping device in this work, introduces damping at high oscillation amplitudes and takes advantage of absorption at low oscillation amplitudes.


Handbook of Contact Mechanics

Handbook of Contact Mechanics

Author: Valentin L. Popov

Publisher: Springer

Published: 2019-04-26

Total Pages: 357

ISBN-13: 3662587092

DOWNLOAD EBOOK

This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.


Structural Motion Engineering

Structural Motion Engineering

Author: Jerome Connor

Publisher: Springer

Published: 2014-06-26

Total Pages: 626

ISBN-13: 3319062816

DOWNLOAD EBOOK

This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective the satisfaction of motion-related design requirements such as restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness and motion control devices to achieve these design targets as well as satisfy constraints on strength. The book is ideal for practicing engineers and graduate students.


The Shock Absorber Handbook

The Shock Absorber Handbook

Author: John C. Dixon

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 432

ISBN-13: 0470516429

DOWNLOAD EBOOK

Every one of the many millions of cars manufactured annually worldwide uses shock absorbers, otherwise known as dampers. These form a vital part of the suspension system of any vehicle, essential for optimizing road holding, performance and safety. This, the second edition of the Shock Absorber Handbook (first edition published in 1999), remains the only English language book devoted to the subject. Comprehensive coverage of design, testing, installation and use of the damper has led to the book's acceptance as the authoritative text on the automotive applications of shock absorbers. In this second edition, the author presents a thorough revision of his book to bring it completely up to date. There are numerous detail improvements, and extensive new material has been added particularly on the many varieties of valve design in the conventional hydraulic damper, and on modern developments such as electrorheological and magnetorheological dampers. "The Shock Absorber Handbook, 2nd Edition" provides a thorough treatment of the issues surrounding the design and selection of shock absorbers. It is an invaluable handbook for those working in industry, as well as a principal reference text for students of mechanical and automotive engineering.


Harmonic Balance for Nonlinear Vibration Problems

Harmonic Balance for Nonlinear Vibration Problems

Author: Malte Krack

Publisher: Springer

Published: 2019-03-23

Total Pages: 167

ISBN-13: 3030140237

DOWNLOAD EBOOK

This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.


Piecewise-smooth Dynamical Systems

Piecewise-smooth Dynamical Systems

Author: Mario Bernardo

Publisher: Springer Science & Business Media

Published: 2008-01-01

Total Pages: 497

ISBN-13: 1846287081

DOWNLOAD EBOOK

This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.


Contact Problems

Contact Problems

Author: L. A. Galin

Publisher: Springer Science & Business Media

Published: 2008-12-31

Total Pages: 325

ISBN-13: 1402090439

DOWNLOAD EBOOK

L.A. Galin’s book on contact problems is a remarkable work. Actually there are two books: the first, published in 1953 deals with contact problems in the classical theory of elasticity; this is the one that was translated into English in 1961. The second book, published in 1980, included the first, and then had new sections on contact problems for viscoelastic materials, and rough contact problems; this section has not previously been translated into English. In this new translation, the original text and the mathematical analysis have been completely revised, new material has been added, and the material appearing in the 1980 Russian translation has been completely rewritten. In addition there are three essays by students of Galin, bringing the analysis up to date.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Railroad Vehicle Dynamics

Railroad Vehicle Dynamics

Author: Ahmed A. Shabana

Publisher: CRC Press

Published: 2007-07-23

Total Pages: 362

ISBN-13: 1420045857

DOWNLOAD EBOOK

Computational multibody system approaches have been extensively used in modeling many physical systems. Railroad Vehicle Dynamics: A Computational Approach presents computational multibody system formulations that can be used to develop computer models for complex railroad vehicle systems. Focusing on nonlinear formulations, this book explains the limitations of linearized formulations that are frequently used in analysis. Vehicle/rail interaction, a distinguishing feature of railroad vehicle systems, requires a special force or kinematic element to be included in multibody system algorithms. Using this approach, the authors address and solve geometric problems that are specific to railroad vehicle systems.


A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation

Author: Richard M. Murray

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 488

ISBN-13: 1351469789

DOWNLOAD EBOOK

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.