On the Cohomology of Certain Non-Compact Shimura Varieties

On the Cohomology of Certain Non-Compact Shimura Varieties

Author: Sophie Morel

Publisher: Princeton University Press

Published: 2010-01-31

Total Pages: 230

ISBN-13: 0691142920

DOWNLOAD EBOOK

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.


On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173)

On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173)

Author: Sophie Morel

Publisher: Princeton University Press

Published: 2010-01-04

Total Pages: 231

ISBN-13: 1400835399

DOWNLOAD EBOOK

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.


The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)

The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)

Author: Michael Harris

Publisher: Princeton University Press

Published: 2001-11-04

Total Pages: 287

ISBN-13: 0691090920

DOWNLOAD EBOOK

This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "simple" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.


Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 708

ISBN-13: 9780821838440

DOWNLOAD EBOOK

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.


Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology

Author: Carlo Mazza

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 240

ISBN-13: 9780821838471

DOWNLOAD EBOOK

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).


The Geometry of Algebraic Cycles

The Geometry of Algebraic Cycles

Author: Reza Akhtar

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 202

ISBN-13: 0821851918

DOWNLOAD EBOOK

The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.


Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci

Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci

Author: Kai-Wen Lan

Publisher: World Scientific Publishing Company

Published: 2018

Total Pages: 0

ISBN-13: 9789813207325

DOWNLOAD EBOOK

This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program. This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.


Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves

Author: Henri Darmon

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 146

ISBN-13: 0821828681

DOWNLOAD EBOOK

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.


Automorphic Forms and Shimura Varieties of PGSp (2)

Automorphic Forms and Shimura Varieties of PGSp (2)

Author: Yuval Z. Flicker

Publisher: World Scientific

Published: 2005

Total Pages: 340

ISBN-13: 9812703322

DOWNLOAD EBOOK

The area of automorphic representations is a natural continuation of studies in the 19th and 20th centuries on number theory and modular forms. A guiding principle is a reciprocity law relating infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side reflect deep relations on the automorphic side, called OC liftings.OCO This in-depth book concentrates on an initial example of the lifting, from a rank 2 symplectic group PGSp(2) to PGL(4), reflecting the natural embedding of Sp(2, ?) in SL(4, ?). It develops the technique of comparing twisted and stabilized trace formulae. It gives a detailed classification of the automorphic and admissible representation of the rank two symplectic PGSp(2) by means of a definition of packets and quasi-packets, using character relations and trace formulae identities. It also shows multiplicity one and rigidity theorems for the discrete spectrum. Applications include the study of the decomposition of the cohomology of an associated Shimura variety, thereby linking Galois representations to geometric automorphic representations. To put these results in a general context, the book concludes with a technical introduction to LanglandsOCO program in the area of automorphic representations. It includes a proof of known cases of ArtinOCOs conjecture."