Bordered Heegaard Floer Homology

Bordered Heegaard Floer Homology

Author: Robert Lipshitz

Publisher: American Mathematical Soc.

Published: 2018-08-09

Total Pages: 294

ISBN-13: 1470428881

DOWNLOAD EBOOK

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.


Grid Homology for Knots and Links

Grid Homology for Knots and Links

Author: Peter S. Ozsváth

Publisher: American Mathematical Soc.

Published: 2015-12-04

Total Pages: 423

ISBN-13: 1470417375

DOWNLOAD EBOOK

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.


3-manifold Groups

3-manifold Groups

Author: Matthias Aschenbrenner

Publisher: Erich Schmidt Verlag GmbH & Co. KG

Published: 2015

Total Pages: 236

ISBN-13: 9783037191545

DOWNLOAD EBOOK

The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.


Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds

Author: Danny Calegari

Publisher: Oxford University Press on Demand

Published: 2007-05-17

Total Pages: 378

ISBN-13: 0198570082

DOWNLOAD EBOOK

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.


The Geometry and Topology of Three-Manifolds

The Geometry and Topology of Three-Manifolds

Author: William P. Thurston

Publisher: American Mathematical Society

Published: 2023-06-16

Total Pages: 337

ISBN-13: 1470474743

DOWNLOAD EBOOK

William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.


Three-dimensional Geometry and Topology

Three-dimensional Geometry and Topology

Author: William P. Thurston

Publisher: Princeton University Press

Published: 1997

Total Pages: 340

ISBN-13: 9780691083049

DOWNLOAD EBOOK

Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.


Quantum Gravity

Quantum Gravity

Author: Bertfried Fauser

Publisher: Springer Science & Business Media

Published: 2007-02-15

Total Pages: 343

ISBN-13: 3764379782

DOWNLOAD EBOOK

This book provides the reader with an overview of the different mathematical attempts to quantize gravity written by leading experts in this field. Also discussed are the possible experimental bounds on quantum gravity effects. The contributions have been strictly refereed and are written in an accessible style. The present volume emerged from the 2nd Blaubeuren Workshop "Mathematical and Physical Aspects of Quantum Gravity".


Guts of Surfaces and the Colored Jones Polynomial

Guts of Surfaces and the Colored Jones Polynomial

Author: David Futer

Publisher: Springer

Published: 2012-12-18

Total Pages: 170

ISBN-13: 9783642333019

DOWNLOAD EBOOK

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.


Introduction to Lipschitz Geometry of Singularities

Introduction to Lipschitz Geometry of Singularities

Author: Walter Neumann

Publisher: Springer Nature

Published: 2021-01-11

Total Pages: 356

ISBN-13: 3030618072

DOWNLOAD EBOOK

This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.


Knots and Links

Knots and Links

Author: Peter R. Cromwell

Publisher: Cambridge University Press

Published: 2004-10-14

Total Pages: 356

ISBN-13: 9780521548311

DOWNLOAD EBOOK

A richly illustrated 2004 textbook on knot theory; minimal prerequisites but modern in style and content.