In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this paper we study and develop the Neutrosophic Triplet Topology (NTT) that was recently introduced by Sahin et al. Like classical topology, the NTT tells how the elements of a set relate spatially to each other in a more comprehensive way using the idea of Neutrosophic Triplet Sets.
This research article lays the foundation to propose the new concept of neutrosophic soft cubic topology. Here we focus on the systematic study of neutrosophic soft cubic sets and deduce various properties which are induced by them. This enables us to introduce some equivalent characterizations and brings out the inter relations among them.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
The purpose of this paper is to define the product related neutrosophic topological space and proved some theorems based on this. We introduce the concept of neutrosophic semiopen sets and neutrosophic semi-closed sets in neutrosophic topological spaces and derive some of their characterization. Finally, we analyze neutrosophic semi-interior and neutrosophic semi-closure operators also.
In this paper, the concept of neutrosophic topological spaces is introduced. We define and study the properties of neutrosophic open sets, closed sets, interior and closure. The set of all generalize neutrosophic pre-closed sets GNPC and the set of all neutrosophic open sets in a neutrosophic topological space can be considered as examples of generalized neutrosophic topological spaces.
In Geographical information systems (GIS) there is a need to model spatial regions with indeterminate boundary and under indeterminacy. The purpose of this chapter is to construct the basic concepts of the so-called "neutrosophic sets via neutrosophic topological spaces (NTs)".