OFDM-based Broadband Wireless Networks covers the latest technological advances in digital broadcasting, wireless LAN, and mobile networks to achieve high spectral efficiency, and to meet peak requirements for multimedia traffic. The book emphasizes the OFDM modem, air-interface, medium access-control (MAC), radio link protocols, and radio network planning. An Instructor Support FTP site is available from the Wiley editorial department.
From the reviews: "This book [...] gives a comprehensive overview of the implementation of OFDM systems. [...] For those who study or work on broadband communication in a wireless multipath environment, this book is a useful and easy-to-read reference. [...]" (Zongsen Wu, Shaowen Song and Tianying Ji, Physics and Computing Dept., Wilfrid Laurier University, ON)
Annotation Deploy and optimize your wireless LAN using the new standard for broadband wireless communication, OFDM. A comprehensive reference written by two experts who helped create the OFDM specifications. A detailed, practical guide to OFDM WLANs does not exist, requiring readers to seek out multiple sources of information, such as white papers and research notes. Detailed explanations of the concepts and algorithms behind OFDM-context that is missing from the two OFDM books currently available. This book explains OFDM WLAN basics, including components of OFDM and multicarrier WLAN standards. It provides a practical approach to OFDM by including software and hardware examples and detailed implementation explanations. OFDM Multicarrier Wireless Networks: A Practical Approach defines and explains the mathematical concepts behind OFDM necessary for successful OFDM WLAN implementations. Juha Heiskala is a research engineer at Nokia Research Center in Irving, TX. Heiskala is active in the IEEE 802.11 standards bodies and has been tasked with developing the 802.11a system simulation on several software platforms. He is the inventor/co-inventor of three pending patents in the area of OFDM LANs and co-designed with Dr. John Terry the modulation and coding scheme for achieving 100 Mbps speeds within currently allocated band specifications for OFDM WLANs. John Terry, Ph.D. is a senior research engineer at Nokia Research Center. He is currently managing the OFDM modulation and coding project in the HSA group. Dr. Terry has published several white papers, given numerous presentations on wireless communications, and generated four patents related to OFDM WLANs. He has 10 years of experience working in wireless communications, including tenures at NASA Glen Research Center and Texas Instruments.
Here's a unique resource that provides you with an up-to-date understanding of how to plan, analyze, and design next-generation broadband wireless networks. This comprehensive book includes all the necessary background information needed to fully understand the material and places emphasis on practical engineering know-how that can be readily applied to designing OFDM-based systems. You find detailed discussions on everything from the physical and media access control layers, to QoS and security functions. Rather than just offering simple explanations of standards, this invaluable book takes a close look at live, real-world systems, explaining how the technical features work and why they were adopted. Moreover, the author includes his own design frameworks and rules that have been developed through his own extensive research and experience. This comprehensive reference is supported with over 170 illustrations and more than 250 equations.
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
Presenting the state-of-the-art in broadband wireless access technology, this unique resource shows you how to design OFDM transceivers and develop a novel wireless transceiver system architecture ndash; one that streamlines wireless system development and deployment because of its reusability, scalability and flexibility. The book gives you a solid understanding of reconfigurable baseband transceiver architecture, fixed broadband access, and 802.16 (WiMax) and 802.20 network design.
MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB®, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB® programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB® codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB® is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB® code examples available for download at www.wiley.com/go/chomimo
Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.
WiMAX Broadband Wireless Access Technology, based on the IEEE 802.16 standard, is at the origin of great promises for many different markets covering fixed wireless Internet Access, Backhauling and Mobile cellular networks. WiMAX technology is designed for the transmission of multimedia services (voice, Internet, email, games and others) at high data rates (of the order of Mb/s per user). It is a very powerful but sometimes complicated technique. The WiMAX System is described in thousands of pages of IEEE 802.16 standard and amendments documents and WiMAX Forum documents. WiMAX: Technology for Broadband Wireless Access provides a global picture of WiMAX and a large number of details that makes access to WiMAX documents much easier. All the aspects of WIMAX are covered. Illustrations and clear explanations for all the main procedures of WiMAX are pedagogically presented in a succession of relatively short chapters Topics covered include WiMAX genesis and framework, WiMAX topologies, protocol layers, MAC layer, MAC frames, WiMAX multiple access, the physical layer, QoS Management, Radio Resource Management, Bandwidth allocation, Network Architecture, Mobility and Security Features a glossary of abbreviations and their definitions, and a wealth of explanatory tables and figures Highlights the most recent changes, including the 802.16e amendment of the standard, needed for Mobile WiMAX Includes technical comparisons of WiMAX vs. 802.11 (WiFi) and cellular 3G technologies This technical introduction to WiMAX, explaining the rather complex standards (IEEE 802.16-2004 and 802.16e) is a must read for engineers, decision-makers and students interested in WiMAX, as well as other researchers and scientists from this evolving field.